Quantum detection of wormholes
Abstract We show how to use quantum metrology to detect a wormhole. A coherent state of the electromagnetic field experiences a phase shift with a slight dependence on the throat radius of a possible distant wormhole. We show that this tiny correction is, in principle, detectable by homodyne measure...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b6dd68e016b94ffda19b79ac5719ad1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b6dd68e016b94ffda19b79ac5719ad1b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b6dd68e016b94ffda19b79ac5719ad1b2021-12-02T12:30:25ZQuantum detection of wormholes10.1038/s41598-017-00882-62045-2322https://doaj.org/article/b6dd68e016b94ffda19b79ac5719ad1b2017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00882-6https://doaj.org/toc/2045-2322Abstract We show how to use quantum metrology to detect a wormhole. A coherent state of the electromagnetic field experiences a phase shift with a slight dependence on the throat radius of a possible distant wormhole. We show that this tiny correction is, in principle, detectable by homodyne measurements after long propagation lengths for a wide range of throat radii and distances to the wormhole, even if the detection takes place very far away from the throat, where the spacetime is very close to a flat geometry. We use realistic parameters from state-of-the-art long-baseline laser interferometry, both Earth-based and space-borne. The scheme is, in principle, robust to optical losses and initial mixedness.Carlos SabínNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-6 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Carlos Sabín Quantum detection of wormholes |
description |
Abstract We show how to use quantum metrology to detect a wormhole. A coherent state of the electromagnetic field experiences a phase shift with a slight dependence on the throat radius of a possible distant wormhole. We show that this tiny correction is, in principle, detectable by homodyne measurements after long propagation lengths for a wide range of throat radii and distances to the wormhole, even if the detection takes place very far away from the throat, where the spacetime is very close to a flat geometry. We use realistic parameters from state-of-the-art long-baseline laser interferometry, both Earth-based and space-borne. The scheme is, in principle, robust to optical losses and initial mixedness. |
format |
article |
author |
Carlos Sabín |
author_facet |
Carlos Sabín |
author_sort |
Carlos Sabín |
title |
Quantum detection of wormholes |
title_short |
Quantum detection of wormholes |
title_full |
Quantum detection of wormholes |
title_fullStr |
Quantum detection of wormholes |
title_full_unstemmed |
Quantum detection of wormholes |
title_sort |
quantum detection of wormholes |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/b6dd68e016b94ffda19b79ac5719ad1b |
work_keys_str_mv |
AT carlossabin quantumdetectionofwormholes |
_version_ |
1718394419352174592 |