Ecology-guided prediction of cross-feeding interactions in the human gut microbiome
Understanding a complex microbial ecosystem such as the human gut microbiome requires information about both microbial species and the metabolites they produce and secrete. Here, the authors propose an ecology-based computational method to predict hundreds of new experimentally untested cross-feedin...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b6e3f2f488c24fc98ae27509782db76e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b6e3f2f488c24fc98ae27509782db76e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b6e3f2f488c24fc98ae27509782db76e2021-12-02T15:52:56ZEcology-guided prediction of cross-feeding interactions in the human gut microbiome10.1038/s41467-021-21586-62041-1723https://doaj.org/article/b6e3f2f488c24fc98ae27509782db76e2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21586-6https://doaj.org/toc/2041-1723Understanding a complex microbial ecosystem such as the human gut microbiome requires information about both microbial species and the metabolites they produce and secrete. Here, the authors propose an ecology-based computational method to predict hundreds of new experimentally untested cross-feeding interactions in the human gut microbiome.Akshit GoyalTong WangVeronika DubinkinaSergei MaslovNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Akshit Goyal Tong Wang Veronika Dubinkina Sergei Maslov Ecology-guided prediction of cross-feeding interactions in the human gut microbiome |
description |
Understanding a complex microbial ecosystem such as the human gut microbiome requires information about both microbial species and the metabolites they produce and secrete. Here, the authors propose an ecology-based computational method to predict hundreds of new experimentally untested cross-feeding interactions in the human gut microbiome. |
format |
article |
author |
Akshit Goyal Tong Wang Veronika Dubinkina Sergei Maslov |
author_facet |
Akshit Goyal Tong Wang Veronika Dubinkina Sergei Maslov |
author_sort |
Akshit Goyal |
title |
Ecology-guided prediction of cross-feeding interactions in the human gut microbiome |
title_short |
Ecology-guided prediction of cross-feeding interactions in the human gut microbiome |
title_full |
Ecology-guided prediction of cross-feeding interactions in the human gut microbiome |
title_fullStr |
Ecology-guided prediction of cross-feeding interactions in the human gut microbiome |
title_full_unstemmed |
Ecology-guided prediction of cross-feeding interactions in the human gut microbiome |
title_sort |
ecology-guided prediction of cross-feeding interactions in the human gut microbiome |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b6e3f2f488c24fc98ae27509782db76e |
work_keys_str_mv |
AT akshitgoyal ecologyguidedpredictionofcrossfeedinginteractionsinthehumangutmicrobiome AT tongwang ecologyguidedpredictionofcrossfeedinginteractionsinthehumangutmicrobiome AT veronikadubinkina ecologyguidedpredictionofcrossfeedinginteractionsinthehumangutmicrobiome AT sergeimaslov ecologyguidedpredictionofcrossfeedinginteractionsinthehumangutmicrobiome |
_version_ |
1718385593932578816 |