Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell system involving the fractional Laplacian
Abstract This paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: { ( − Δ ) α 2 u ( x ) = ( 1 | ⋅ | σ ∗ v p 1 ) v p 2 ( x ) , x ∈ R n , ( − Δ ) α 2 v ( x ) = ( 1 | ⋅ | σ ∗ u q 1 ) u q 2 ( x ) , x ∈ R n , u ( x ) ≥ 0 , v ( x ) ≥ 0 , x ∈ R n , $$ \textst...
Guardado en:
Autores principales: | Yunting Li, Yaqiong Liu, Yunhui Yi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b6e46c06aabf47fda94f59c003f27b83 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
por: Candito Pasquale, et al.
Publicado: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
por: Wang Jun
Publicado: (2021) -
Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz–Sobolev spaces
por: Q-Heung Choi, et al.
Publicado: (2021) -
NONNEGATIVE SOLUTIONS OF QUASILINEAR ELLIPTIC PROBLEMS WITH SUBLINEAR INDEFINITE NONLINEARITY
por: Wang,Weihui, et al.
Publicado: (2013) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021)