Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell system involving the fractional Laplacian
Abstract This paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: { ( − Δ ) α 2 u ( x ) = ( 1 | ⋅ | σ ∗ v p 1 ) v p 2 ( x ) , x ∈ R n , ( − Δ ) α 2 v ( x ) = ( 1 | ⋅ | σ ∗ u q 1 ) u q 2 ( x ) , x ∈ R n , u ( x ) ≥ 0 , v ( x ) ≥ 0 , x ∈ R n , $$ \textst...
Enregistré dans:
Auteurs principaux: | Yunting Li, Yaqiong Liu, Yunhui Yi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b6e46c06aabf47fda94f59c003f27b83 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
par: Candito Pasquale, et autres
Publié: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
par: Wang Jun
Publié: (2021) -
Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz–Sobolev spaces
par: Q-Heung Choi, et autres
Publié: (2021) -
NONNEGATIVE SOLUTIONS OF QUASILINEAR ELLIPTIC PROBLEMS WITH SUBLINEAR INDEFINITE NONLINEARITY
par: Wang,Weihui, et autres
Publié: (2013) -
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
par: Han Qi
Publié: (2021)