Developing a COVID-19 mortality risk prediction model when individual-level data are not available
Identification of individuals at risk of severe COVID-19 disease could inform treatment and public health planning. Here, the authors develop and validate a risk prediction model for COVID-19 mortality in Israel by building a model for severe respiratory infection and recalibrating it using COVID-19...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b6f41c67d1bb44c58e4540ffa24f6729 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b6f41c67d1bb44c58e4540ffa24f6729 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b6f41c67d1bb44c58e4540ffa24f67292021-12-02T19:12:27ZDeveloping a COVID-19 mortality risk prediction model when individual-level data are not available10.1038/s41467-020-18297-92041-1723https://doaj.org/article/b6f41c67d1bb44c58e4540ffa24f67292020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18297-9https://doaj.org/toc/2041-1723Identification of individuals at risk of severe COVID-19 disease could inform treatment and public health planning. Here, the authors develop and validate a risk prediction model for COVID-19 mortality in Israel by building a model for severe respiratory infection and recalibrating it using COVID-19 case fatality rates.Noam BardaDan RieselAmichay AkrivJoseph LevyUriah FinkelGal YonaDaniel GreenfeldShimon SheibaJonathan SomerEitan BachmatGuy N. RothblumUri ShalitDoron NetzerRan BalicerNoa DaganNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Noam Barda Dan Riesel Amichay Akriv Joseph Levy Uriah Finkel Gal Yona Daniel Greenfeld Shimon Sheiba Jonathan Somer Eitan Bachmat Guy N. Rothblum Uri Shalit Doron Netzer Ran Balicer Noa Dagan Developing a COVID-19 mortality risk prediction model when individual-level data are not available |
description |
Identification of individuals at risk of severe COVID-19 disease could inform treatment and public health planning. Here, the authors develop and validate a risk prediction model for COVID-19 mortality in Israel by building a model for severe respiratory infection and recalibrating it using COVID-19 case fatality rates. |
format |
article |
author |
Noam Barda Dan Riesel Amichay Akriv Joseph Levy Uriah Finkel Gal Yona Daniel Greenfeld Shimon Sheiba Jonathan Somer Eitan Bachmat Guy N. Rothblum Uri Shalit Doron Netzer Ran Balicer Noa Dagan |
author_facet |
Noam Barda Dan Riesel Amichay Akriv Joseph Levy Uriah Finkel Gal Yona Daniel Greenfeld Shimon Sheiba Jonathan Somer Eitan Bachmat Guy N. Rothblum Uri Shalit Doron Netzer Ran Balicer Noa Dagan |
author_sort |
Noam Barda |
title |
Developing a COVID-19 mortality risk prediction model when individual-level data are not available |
title_short |
Developing a COVID-19 mortality risk prediction model when individual-level data are not available |
title_full |
Developing a COVID-19 mortality risk prediction model when individual-level data are not available |
title_fullStr |
Developing a COVID-19 mortality risk prediction model when individual-level data are not available |
title_full_unstemmed |
Developing a COVID-19 mortality risk prediction model when individual-level data are not available |
title_sort |
developing a covid-19 mortality risk prediction model when individual-level data are not available |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/b6f41c67d1bb44c58e4540ffa24f6729 |
work_keys_str_mv |
AT noambarda developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT danriesel developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT amichayakriv developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT josephlevy developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT uriahfinkel developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT galyona developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT danielgreenfeld developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT shimonsheiba developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT jonathansomer developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT eitanbachmat developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT guynrothblum developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT urishalit developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT doronnetzer developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT ranbalicer developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable AT noadagan developingacovid19mortalityriskpredictionmodelwhenindividualleveldataarenotavailable |
_version_ |
1718377060752162816 |