Discovering the building blocks of atomic systems using machine learning: application to grain boundaries

Machine learning: Modelling atomic systems to make property predictions A method for representing atomic systems for machine learning is shown that can provide access to the physical properties of these systems. Machine learning is a powerful tool for finding correlations but when used to look at re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Conrad W. Rosenbrock, Eric R. Homer, Gábor Csányi, Gus L. W. Hart
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/b71a7a9a5df64438a53ef378aa2fd64e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares