Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
Machine learning: Modelling atomic systems to make property predictions A method for representing atomic systems for machine learning is shown that can provide access to the physical properties of these systems. Machine learning is a powerful tool for finding correlations but when used to look at re...
Enregistré dans:
Auteurs principaux: | Conrad W. Rosenbrock, Eric R. Homer, Gábor Csányi, Gus L. W. Hart |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b71a7a9a5df64438a53ef378aa2fd64e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine-learned interatomic potentials for alloys and alloy phase diagrams
par: Conrad W. Rosenbrock, et autres
Publié: (2021) -
Equation of motion for grain boundaries in polycrystals
par: Luchan Zhang, et autres
Publié: (2021) -
Computing grain boundary diagrams of thermodynamic and mechanical properties
par: Chongze Hu, et autres
Publié: (2021) -
Hydrogen embrittlement of grain boundaries in nickel: an atomistic study
par: Shan Huang, et autres
Publié: (2017) -
Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries
par: Reza Darvishi Kamachali, et autres
Publié: (2020)