Discovering the building blocks of atomic systems using machine learning: application to grain boundaries

Machine learning: Modelling atomic systems to make property predictions A method for representing atomic systems for machine learning is shown that can provide access to the physical properties of these systems. Machine learning is a powerful tool for finding correlations but when used to look at re...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Conrad W. Rosenbrock, Eric R. Homer, Gábor Csányi, Gus L. W. Hart
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
Accès en ligne:https://doaj.org/article/b71a7a9a5df64438a53ef378aa2fd64e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires