Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
Machine learning: Modelling atomic systems to make property predictions A method for representing atomic systems for machine learning is shown that can provide access to the physical properties of these systems. Machine learning is a powerful tool for finding correlations but when used to look at re...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b71a7a9a5df64438a53ef378aa2fd64e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!