Bubbly flow prediction with randomized neural cells artificial learning and fuzzy systems based on k–ε turbulence and Eulerian model data set
Abstract Computing gas and liquid interactions based on interfacial force models require a proper turbulence model that accurately resolve the turbulent scales such as turbulence kinetic energy and turbulence dissipation rate with cheap computational resources. The k − ε turbulence model can be a g...
Guardado en:
Autores principales: | Meisam Babanezhad, Mahboubeh Pishnamazi, Azam Marjani, Saeed Shirazian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b72973b2e7e849de82b0c64fa4f19933 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multidimensional machine learning algorithms to learn liquid velocity inside a cylindrical bubble column reactor
por: Meisam Babanezhad, et al.
Publicado: (2020) -
Liquid temperature prediction in bubbly flow using ant colony optimization algorithm in the fuzzy inference system as a trainer
por: Meisam Babanezhad, et al.
Publicado: (2020) -
Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Prediction of gas velocity in two-phase flow using developed fuzzy logic system with differential evolution algorithm
por: Meisam Babanezhad, et al.
Publicado: (2021)