An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction
Machine learning (ML) models are commonly used in solar modeling due to their high predictive accuracy. However, the predictions of these models are difficult to explain and trust. This paper aims to demonstrate the utility of two interpretation techniques to explain and improve the predictions of M...
Guardado en:
Autores principales: | Mohamed Chaibi, EL Mahjoub Benghoulam, Lhoussaine Tarik, Mohamed Berrada, Abdellah El Hmaidi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b747539a9fcd4b4291320360fb351d14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning Simulation of Land Cover Impact on Surface Urban Heat Island Surrounding Park Areas
por: Dakota McCarty, et al.
Publicado: (2021) -
Comparison of Regression and Neural Networks Models to Estimate Solar Radiation
por: Bocco,Mónica, et al.
Publicado: (2010) -
Aplicación de Técnicas Neuro-Difusas para el Diseño de un Controlador
por: Noriega,A., et al.
Publicado: (2005) -
Red Neuronal Creciente Usando Perturbación Simultánea
por: Sánchez,G., et al.
Publicado: (2004) -
MLP-Based Model for Estimation of Methane Seam Pressure
por: Marta Skiba, et al.
Publicado: (2021)