Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus

In this paper, we first prove an identity for twice quantum differentiable functions. Then, by utilizing the convexity of ∣Dq2bf∣| {}^{b}D_{q}^{2}\hspace{0.08em}f| and ∣Dq2af∣| {}_{a}D_{q}^{2}\hspace{0.08em}f| , we establish some quantum Ostrowski inequalities for twice quantum differentiable mappi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Muhammad Aamir, Budak Hüseyin, Akkurt Abdullah, Chu Yu-Ming
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/b74d4632ca2b4c5eb52f8fa196886a45
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b74d4632ca2b4c5eb52f8fa196886a45
record_format dspace
spelling oai:doaj.org-article:b74d4632ca2b4c5eb52f8fa196886a452021-12-05T14:10:52ZQuantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus2391-545510.1515/math-2021-0020https://doaj.org/article/b74d4632ca2b4c5eb52f8fa196886a452021-06-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0020https://doaj.org/toc/2391-5455In this paper, we first prove an identity for twice quantum differentiable functions. Then, by utilizing the convexity of ∣Dq2bf∣| {}^{b}D_{q}^{2}\hspace{0.08em}f| and ∣Dq2af∣| {}_{a}D_{q}^{2}\hspace{0.08em}f| , we establish some quantum Ostrowski inequalities for twice quantum differentiable mappings involving qa{q}_{a} and qb{q}^{b}-quantum integrals. The results presented here are the generalization of already published ones.Ali Muhammad AamirBudak HüseyinAkkurt AbdullahChu Yu-MingDe Gruyterarticleostrowski inequalityq-integralquantum calculusconvex function26-xxMathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 440-449 (2021)
institution DOAJ
collection DOAJ
language EN
topic ostrowski inequality
q-integral
quantum calculus
convex function
26-xx
Mathematics
QA1-939
spellingShingle ostrowski inequality
q-integral
quantum calculus
convex function
26-xx
Mathematics
QA1-939
Ali Muhammad Aamir
Budak Hüseyin
Akkurt Abdullah
Chu Yu-Ming
Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
description In this paper, we first prove an identity for twice quantum differentiable functions. Then, by utilizing the convexity of ∣Dq2bf∣| {}^{b}D_{q}^{2}\hspace{0.08em}f| and ∣Dq2af∣| {}_{a}D_{q}^{2}\hspace{0.08em}f| , we establish some quantum Ostrowski inequalities for twice quantum differentiable mappings involving qa{q}_{a} and qb{q}^{b}-quantum integrals. The results presented here are the generalization of already published ones.
format article
author Ali Muhammad Aamir
Budak Hüseyin
Akkurt Abdullah
Chu Yu-Ming
author_facet Ali Muhammad Aamir
Budak Hüseyin
Akkurt Abdullah
Chu Yu-Ming
author_sort Ali Muhammad Aamir
title Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
title_short Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
title_full Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
title_fullStr Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
title_full_unstemmed Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
title_sort quantum ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/b74d4632ca2b4c5eb52f8fa196886a45
work_keys_str_mv AT alimuhammadaamir quantumostrowskitypeinequalitiesfortwicequantumdifferentiablefunctionsinquantumcalculus
AT budakhuseyin quantumostrowskitypeinequalitiesfortwicequantumdifferentiablefunctionsinquantumcalculus
AT akkurtabdullah quantumostrowskitypeinequalitiesfortwicequantumdifferentiablefunctionsinquantumcalculus
AT chuyuming quantumostrowskitypeinequalitiesfortwicequantumdifferentiablefunctionsinquantumcalculus
_version_ 1718371651705372672