Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
In this paper, we first prove an identity for twice quantum differentiable functions. Then, by utilizing the convexity of ∣Dq2bf∣| {}^{b}D_{q}^{2}\hspace{0.08em}f| and ∣Dq2af∣| {}_{a}D_{q}^{2}\hspace{0.08em}f| , we establish some quantum Ostrowski inequalities for twice quantum differentiable mappi...
Guardado en:
Autores principales: | Ali Muhammad Aamir, Budak Hüseyin, Akkurt Abdullah, Chu Yu-Ming |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b74d4632ca2b4c5eb52f8fa196886a45 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Montgomery identity and Ostrowski-type inequalities via quantum calculus
por: Sitthiwirattham Thanin, et al.
Publicado: (2021) -
On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions
por: Ali Muhammad Aamir, et al.
Publicado: (2021) -
Ostrowski and Simpson type inequalities for multiplicative integrals
por: Aamir Ali,Muhammad, et al.
Publicado: (2021) -
Refinements of quantum Hermite-Hadamard-type inequalities
por: Budak Hüseyin, et al.
Publicado: (2021) -
Some trapezoid and midpoint type inequalities for newly defined quantum integrals
por: Budak,Hüseyin
Publicado: (2021)