Predicting structure zone diagrams for thin film synthesis by generative machine learning
Controlling the microstructure of thin films is vital for tuning their properties. Here, machine learning is applied to obtain synthesis-composition-microstructure relationships in the form of structure zone diagrams for thin films, enabling microstructure prediction.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b761d7313f9244cb9fc3e14a15558671 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b761d7313f9244cb9fc3e14a15558671 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b761d7313f9244cb9fc3e14a155586712021-12-02T11:44:58ZPredicting structure zone diagrams for thin film synthesis by generative machine learning10.1038/s43246-020-0017-22662-4443https://doaj.org/article/b761d7313f9244cb9fc3e14a155586712020-03-01T00:00:00Zhttps://doi.org/10.1038/s43246-020-0017-2https://doaj.org/toc/2662-4443Controlling the microstructure of thin films is vital for tuning their properties. Here, machine learning is applied to obtain synthesis-composition-microstructure relationships in the form of structure zone diagrams for thin films, enabling microstructure prediction.Lars BankoYury LysogorskiyDario GrochlaDennis NaujoksRalf DrautzAlfred LudwigNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 1, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Lars Banko Yury Lysogorskiy Dario Grochla Dennis Naujoks Ralf Drautz Alfred Ludwig Predicting structure zone diagrams for thin film synthesis by generative machine learning |
description |
Controlling the microstructure of thin films is vital for tuning their properties. Here, machine learning is applied to obtain synthesis-composition-microstructure relationships in the form of structure zone diagrams for thin films, enabling microstructure prediction. |
format |
article |
author |
Lars Banko Yury Lysogorskiy Dario Grochla Dennis Naujoks Ralf Drautz Alfred Ludwig |
author_facet |
Lars Banko Yury Lysogorskiy Dario Grochla Dennis Naujoks Ralf Drautz Alfred Ludwig |
author_sort |
Lars Banko |
title |
Predicting structure zone diagrams for thin film synthesis by generative machine learning |
title_short |
Predicting structure zone diagrams for thin film synthesis by generative machine learning |
title_full |
Predicting structure zone diagrams for thin film synthesis by generative machine learning |
title_fullStr |
Predicting structure zone diagrams for thin film synthesis by generative machine learning |
title_full_unstemmed |
Predicting structure zone diagrams for thin film synthesis by generative machine learning |
title_sort |
predicting structure zone diagrams for thin film synthesis by generative machine learning |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/b761d7313f9244cb9fc3e14a15558671 |
work_keys_str_mv |
AT larsbanko predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning AT yurylysogorskiy predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning AT dariogrochla predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning AT dennisnaujoks predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning AT ralfdrautz predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning AT alfredludwig predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning |
_version_ |
1718395305429303296 |