Predicting structure zone diagrams for thin film synthesis by generative machine learning

Controlling the microstructure of thin films is vital for tuning their properties. Here, machine learning is applied to obtain synthesis-composition-microstructure relationships in the form of structure zone diagrams for thin films, enabling microstructure prediction.

Guardado en:
Detalles Bibliográficos
Autores principales: Lars Banko, Yury Lysogorskiy, Dario Grochla, Dennis Naujoks, Ralf Drautz, Alfred Ludwig
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/b761d7313f9244cb9fc3e14a15558671
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b761d7313f9244cb9fc3e14a15558671
record_format dspace
spelling oai:doaj.org-article:b761d7313f9244cb9fc3e14a155586712021-12-02T11:44:58ZPredicting structure zone diagrams for thin film synthesis by generative machine learning10.1038/s43246-020-0017-22662-4443https://doaj.org/article/b761d7313f9244cb9fc3e14a155586712020-03-01T00:00:00Zhttps://doi.org/10.1038/s43246-020-0017-2https://doaj.org/toc/2662-4443Controlling the microstructure of thin films is vital for tuning their properties. Here, machine learning is applied to obtain synthesis-composition-microstructure relationships in the form of structure zone diagrams for thin films, enabling microstructure prediction.Lars BankoYury LysogorskiyDario GrochlaDennis NaujoksRalf DrautzAlfred LudwigNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 1, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Lars Banko
Yury Lysogorskiy
Dario Grochla
Dennis Naujoks
Ralf Drautz
Alfred Ludwig
Predicting structure zone diagrams for thin film synthesis by generative machine learning
description Controlling the microstructure of thin films is vital for tuning their properties. Here, machine learning is applied to obtain synthesis-composition-microstructure relationships in the form of structure zone diagrams for thin films, enabling microstructure prediction.
format article
author Lars Banko
Yury Lysogorskiy
Dario Grochla
Dennis Naujoks
Ralf Drautz
Alfred Ludwig
author_facet Lars Banko
Yury Lysogorskiy
Dario Grochla
Dennis Naujoks
Ralf Drautz
Alfred Ludwig
author_sort Lars Banko
title Predicting structure zone diagrams for thin film synthesis by generative machine learning
title_short Predicting structure zone diagrams for thin film synthesis by generative machine learning
title_full Predicting structure zone diagrams for thin film synthesis by generative machine learning
title_fullStr Predicting structure zone diagrams for thin film synthesis by generative machine learning
title_full_unstemmed Predicting structure zone diagrams for thin film synthesis by generative machine learning
title_sort predicting structure zone diagrams for thin film synthesis by generative machine learning
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/b761d7313f9244cb9fc3e14a15558671
work_keys_str_mv AT larsbanko predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning
AT yurylysogorskiy predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning
AT dariogrochla predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning
AT dennisnaujoks predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning
AT ralfdrautz predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning
AT alfredludwig predictingstructurezonediagramsforthinfilmsynthesisbygenerativemachinelearning
_version_ 1718395305429303296