Privacy-Preserving Generative Adversarial Network for Case-Based Explainability in Medical Image Analysis
Although Deep Learning models have achieved incredible results in medical image classification tasks, their lack of interpretability hinders their deployment in the clinical context. Case-based interpretability provides intuitive explanations, as it is a much more human-like approach than saliency-m...
Guardado en:
Autores principales: | Helena Montenegro, Wilson Silva, Jaime S. Cardoso |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b765b6586cc548ca911a50167e55362a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Image and Graph Restoration Dependent on Generative Adversarial Network Algorithm
por: Yuanhao Cao
Publicado: (2021) -
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
Ulixes: Facial Recognition Privacy with Adversarial Machine Learning
por: Cilloni Thomas, et al.
Publicado: (2022) -
Automated Processing and Phenotype Extraction of Ovine Medical Images Using a Combined Generative Adversarial Network and Computer Vision Pipeline
por: James Francis Robson, et al.
Publicado: (2021) -
Restricted Evasion Attack: Generation of Restricted-Area Adversarial Example
por: Hyun Kwon, et al.
Publicado: (2019)