Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks
Constant monitoring of road surfaces helps to show the urgency of deterioration or problems in the road construction and to improve the safety level of the road surface. Conditional generative adversarial networks (cGAN) are a powerful tool to generate or transform the images used for crack detectio...
Guardado en:
Autores principales: | Anastasiia Kyslytsyna, Kewen Xia, Artem Kislitsyn, Isselmou Abd El Kader, Youxi Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b769ecb2a90141fd8d3b9ae403e42a4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Road crack segmentation using an attention residual U-Net with generative adversarial
por: Xing Hu, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
GAN-GL: Generative Adversarial Networks for Glacial Lake Mapping
por: Hang Zhao, et al.
Publicado: (2021) -
Adversarial Learning with Bidirectional Attention for Visual Question Answering
por: Qifeng Li, et al.
Publicado: (2021)