Prediction of boiler gas side effective heat transfer coefficients using mixture density networks and historic plant data
Machine learning has received increased recognition for applications in engineering such as the thermal engineering discipline due to its abilities to circumvent thermodynamic simulation approaches and capture complex inter-dependencies. There have been recent headways to couple deep learning models...
Guardado en:
Autores principales: | Raidoo Renita, Laubscher Ryno |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b76e652d6a19446b98e88b5bd96da427 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Validation of a thermal non-equilibrium Eulerian-Eulerian multiphase model of a 620 MWe pulverized fuel power boiler
por: Rawlins Brad, et al.
Publicado: (2021) -
Development and validation of a robust integrated thermal power plant model for load loss analysis and identification
por: Marx Alton, et al.
Publicado: (2021) -
The System of Automatic Control of Fuel Supply to the Boiler at the Thermal Power Plant
por: Dmitrieva Valeria, et al.
Publicado: (2021) -
Effect of Adding Alcohols and Gas Velocity on Gas Hold up and Mass Transfer Coefficient in Bubble Columns with Draught Tube
por: Ali Abdul-Rahman N. Jasim
Publicado: (2009) -
Prediction of Pressure-Viscosity Coefficient of Mixtures
por: Shinichiro Hayashi, et al.
Publicado: (2008)