Prediction of boiler gas side effective heat transfer coefficients using mixture density networks and historic plant data
Machine learning has received increased recognition for applications in engineering such as the thermal engineering discipline due to its abilities to circumvent thermodynamic simulation approaches and capture complex inter-dependencies. There have been recent headways to couple deep learning models...
Enregistré dans:
Auteurs principaux: | Raidoo Renita, Laubscher Ryno |
---|---|
Format: | article |
Langue: | EN FR |
Publié: |
EDP Sciences
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b76e652d6a19446b98e88b5bd96da427 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Validation of a thermal non-equilibrium Eulerian-Eulerian multiphase model of a 620 MWe pulverized fuel power boiler
par: Rawlins Brad, et autres
Publié: (2021) -
Development and validation of a robust integrated thermal power plant model for load loss analysis and identification
par: Marx Alton, et autres
Publié: (2021) -
The System of Automatic Control of Fuel Supply to the Boiler at the Thermal Power Plant
par: Dmitrieva Valeria, et autres
Publié: (2021) -
Effect of Adding Alcohols and Gas Velocity on Gas Hold up and Mass Transfer Coefficient in Bubble Columns with Draught Tube
par: Ali Abdul-Rahman N. Jasim
Publié: (2009) -
Prediction of Pressure-Viscosity Coefficient of Mixtures
par: Shinichiro Hayashi, et autres
Publié: (2008)