Neural Canonical Transformation with Symplectic Flows
Canonical transformation plays a fundamental role in simplifying and solving classical Hamiltonian systems. Intriguingly, it has a natural correspondence to normalizing flows with a symplectic constraint. Building on this key insight, we design a neural canonical transformation approach to automatic...
Guardado en:
Autores principales: | Shuo-Hui Li, Chen-Xiao Dong, Linfeng Zhang, Lei Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b7777a0445ae48eea297b3565afeaa27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DC model for SiC MOSFETs using artificial neural network optimized by artificial bee colony algorithm
por: Yuan Liu, et al.
Publicado: (2021) -
Spontaneous CP violation and symplectic modular symmetry in Calabi-Yau compactifications
por: Keiya Ishiguro, et al.
Publicado: (2021) -
Taming nucleon density distributions with deep neural network
por: Zu-Xing Yang, et al.
Publicado: (2021) -
Investigation of the motion characteristics for a long flexible rotating pipe in flow by IDVM–FEM method
por: Wei Chen, et al.
Publicado: (2021) -
Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
por: Qianyi Li, et al.
Publicado: (2021)