Divergent connectomic organization delineates genetic evolutionary traits in the human brain

Abstract The relationship between human brain connectomics and genetic evolutionary traits remains elusive due to the inherent challenges in combining complex associations within cerebral tissue. In this study, insights are provided about the relationship between connectomics, gene expression and di...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elisenda Bueichekú, Jose M. Gonzalez-de-Echavarri, Laura Ortiz-Teran, Victor Montal, Federico d’Oleire Uquillas, Lola De Marcos, William Orwig, Chan-Mi Kim, Elena Ortiz-Teran, Silvia Basaia, Ibai Diez, Jorge Sepulcre
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b77a2889ddd64746ab39110f7f8fb449
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b77a2889ddd64746ab39110f7f8fb449
record_format dspace
spelling oai:doaj.org-article:b77a2889ddd64746ab39110f7f8fb4492021-12-02T19:16:18ZDivergent connectomic organization delineates genetic evolutionary traits in the human brain10.1038/s41598-021-99082-62045-2322https://doaj.org/article/b77a2889ddd64746ab39110f7f8fb4492021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99082-6https://doaj.org/toc/2045-2322Abstract The relationship between human brain connectomics and genetic evolutionary traits remains elusive due to the inherent challenges in combining complex associations within cerebral tissue. In this study, insights are provided about the relationship between connectomics, gene expression and divergent evolutionary pathways from non-human primates to humans. Using in vivo human brain resting-state data, we detected two co-existing idiosyncratic functional systems: the segregation network, in charge of module specialization, and the integration network, responsible for information flow. Their topology was approximated to whole-brain genetic expression (Allen Human Brain Atlas) and the co-localization patterns yielded that neuron communication functionalities—linked to Neuron Projection—were overrepresented cell traits. Homologue-orthologue comparisons using dN/dS-ratios bridged the gap between neurogenetic outcomes and biological data, summarizing the known evolutionary divergent pathways within the Homo Sapiens lineage. Evidence suggests that a crosstalk between functional specialization and information flow reflects putative biological qualities of brain architecture, such as neurite cellular functions like axonal or dendrite processes, hypothesized to have been selectively conserved in the species through positive selection. These findings expand our understanding of human brain function and unveil aspects of our cognitive trajectory in relation to our simian ancestors previously left unexplored.Elisenda BueichekúJose M. Gonzalez-de-EchavarriLaura Ortiz-TeranVictor MontalFederico d’Oleire UquillasLola De MarcosWilliam OrwigChan-Mi KimElena Ortiz-TeranSilvia BasaiaIbai DiezJorge SepulcreNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Elisenda Bueichekú
Jose M. Gonzalez-de-Echavarri
Laura Ortiz-Teran
Victor Montal
Federico d’Oleire Uquillas
Lola De Marcos
William Orwig
Chan-Mi Kim
Elena Ortiz-Teran
Silvia Basaia
Ibai Diez
Jorge Sepulcre
Divergent connectomic organization delineates genetic evolutionary traits in the human brain
description Abstract The relationship between human brain connectomics and genetic evolutionary traits remains elusive due to the inherent challenges in combining complex associations within cerebral tissue. In this study, insights are provided about the relationship between connectomics, gene expression and divergent evolutionary pathways from non-human primates to humans. Using in vivo human brain resting-state data, we detected two co-existing idiosyncratic functional systems: the segregation network, in charge of module specialization, and the integration network, responsible for information flow. Their topology was approximated to whole-brain genetic expression (Allen Human Brain Atlas) and the co-localization patterns yielded that neuron communication functionalities—linked to Neuron Projection—were overrepresented cell traits. Homologue-orthologue comparisons using dN/dS-ratios bridged the gap between neurogenetic outcomes and biological data, summarizing the known evolutionary divergent pathways within the Homo Sapiens lineage. Evidence suggests that a crosstalk between functional specialization and information flow reflects putative biological qualities of brain architecture, such as neurite cellular functions like axonal or dendrite processes, hypothesized to have been selectively conserved in the species through positive selection. These findings expand our understanding of human brain function and unveil aspects of our cognitive trajectory in relation to our simian ancestors previously left unexplored.
format article
author Elisenda Bueichekú
Jose M. Gonzalez-de-Echavarri
Laura Ortiz-Teran
Victor Montal
Federico d’Oleire Uquillas
Lola De Marcos
William Orwig
Chan-Mi Kim
Elena Ortiz-Teran
Silvia Basaia
Ibai Diez
Jorge Sepulcre
author_facet Elisenda Bueichekú
Jose M. Gonzalez-de-Echavarri
Laura Ortiz-Teran
Victor Montal
Federico d’Oleire Uquillas
Lola De Marcos
William Orwig
Chan-Mi Kim
Elena Ortiz-Teran
Silvia Basaia
Ibai Diez
Jorge Sepulcre
author_sort Elisenda Bueichekú
title Divergent connectomic organization delineates genetic evolutionary traits in the human brain
title_short Divergent connectomic organization delineates genetic evolutionary traits in the human brain
title_full Divergent connectomic organization delineates genetic evolutionary traits in the human brain
title_fullStr Divergent connectomic organization delineates genetic evolutionary traits in the human brain
title_full_unstemmed Divergent connectomic organization delineates genetic evolutionary traits in the human brain
title_sort divergent connectomic organization delineates genetic evolutionary traits in the human brain
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/b77a2889ddd64746ab39110f7f8fb449
work_keys_str_mv AT elisendabueicheku divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT josemgonzalezdeechavarri divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT lauraortizteran divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT victormontal divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT federicodoleireuquillas divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT lolademarcos divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT williamorwig divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT chanmikim divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT elenaortizteran divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT silviabasaia divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT ibaidiez divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
AT jorgesepulcre divergentconnectomicorganizationdelineatesgeneticevolutionarytraitsinthehumanbrain
_version_ 1718376992556974080