Temporal correlation detection using computational phase-change memory
New computing paradigms, such as in-memory computing, are expected to overcome the limitations of conventional computing approaches. Sebastian et al. report a large-scale demonstration of computational phase change memory (PCM) by performing high-level computational primitives using one million PCM...
Guardado en:
Autores principales: | Abu Sebastian, Tomas Tuma, Nikolaos Papandreou, Manuel Le Gallo, Lukas Kull, Thomas Parnell, Evangelos Eleftheriou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b78bba0b57c14ed192f98db76b3dc146 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Accurate deep neural network inference using computational phase-change memory
por: Vinay Joshi, et al.
Publicado: (2020) -
Correlations for computation and computation for correlations
por: Bülent Demirel, et al.
Publicado: (2021) -
Robust high-dimensional memory-augmented neural networks
por: Geethan Karunaratne, et al.
Publicado: (2021) -
Changing temporal context in human temporal lobe promotes memory of distinct episodes
por: Mostafa M. El-Kalliny, et al.
Publicado: (2019)