Temporal correlation detection using computational phase-change memory
New computing paradigms, such as in-memory computing, are expected to overcome the limitations of conventional computing approaches. Sebastian et al. report a large-scale demonstration of computational phase change memory (PCM) by performing high-level computational primitives using one million PCM...
Enregistré dans:
Auteurs principaux: | Abu Sebastian, Tomas Tuma, Nikolaos Papandreou, Manuel Le Gallo, Lukas Kull, Thomas Parnell, Evangelos Eleftheriou |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b78bba0b57c14ed192f98db76b3dc146 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Neuromorphic computing with multi-memristive synapses
par: Irem Boybat, et autres
Publié: (2018) -
Accurate deep neural network inference using computational phase-change memory
par: Vinay Joshi, et autres
Publié: (2020) -
Correlations for computation and computation for correlations
par: Bülent Demirel, et autres
Publié: (2021) -
Robust high-dimensional memory-augmented neural networks
par: Geethan Karunaratne, et autres
Publié: (2021) -
Changing temporal context in human temporal lobe promotes memory of distinct episodes
par: Mostafa M. El-Kalliny, et autres
Publié: (2019)