A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy

Abstract Colon cancer induces a state of mucosal dysbiosis with associated niche specific changes in the gut microbiota. However, the key metabolic functions of these bacteria remain unclear. We performed a prospective observational study in patients undergoing elective surgery for colon cancer with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: James Kinross, Reza Mirnezami, James Alexander, Richard Brown, Alasdair Scott, Dieter Galea, Kirill Veselkov, Rob Goldin, Ara Darzi, Jeremy Nicholson, Julian R. Marchesi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b793a52c69cf4912b4c52985ea7ffdc4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b793a52c69cf4912b4c52985ea7ffdc4
record_format dspace
spelling oai:doaj.org-article:b793a52c69cf4912b4c52985ea7ffdc42021-12-02T16:05:57ZA prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy10.1038/s41598-017-08150-32045-2322https://doaj.org/article/b793a52c69cf4912b4c52985ea7ffdc42017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08150-3https://doaj.org/toc/2045-2322Abstract Colon cancer induces a state of mucosal dysbiosis with associated niche specific changes in the gut microbiota. However, the key metabolic functions of these bacteria remain unclear. We performed a prospective observational study in patients undergoing elective surgery for colon cancer without mechanical bowel preparation (n = 18). Using 16 S rRNA gene sequencing we demonstrated that microbiota ecology appears to be cancer stage-specific and strongly associated with histological features of poor prognosis. Fusobacteria (p < 0.007) and ε- Proteobacteria (p < 0.01) were enriched on tumour when compared to adjacent normal mucosal tissue, and fusobacteria and β-Proteobacteria levels increased with advancing cancer stage (p = 0.014 and 0.002 respecitvely). Metabonomic analysis using 1H Magic Angle Spinning Nuclear Magnetic Resonsance  (MAS-NMR) spectroscopy, demonstrated increased abundance of taurine, isoglutamine, choline, lactate, phenylalanine and tyrosine and decreased levels of lipids and triglycerides in tumour relative to adjacent healthy tissue. Network analysis revealed that bacteria associated with poor prognostic features were not responsible for the modification of the cancer mucosal metabonome. Thus the colon cancer mucosal microbiome evolves with cancer stage to meet the demands of cancer metabolism. Passenger microbiota may play a role in the maintenance of cancer mucosal metabolic homeostasis but these metabolic functions may not be stage specific.James KinrossReza MirnezamiJames AlexanderRichard BrownAlasdair ScottDieter GaleaKirill VeselkovRob GoldinAra DarziJeremy NicholsonJulian R. MarchesiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
James Kinross
Reza Mirnezami
James Alexander
Richard Brown
Alasdair Scott
Dieter Galea
Kirill Veselkov
Rob Goldin
Ara Darzi
Jeremy Nicholson
Julian R. Marchesi
A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy
description Abstract Colon cancer induces a state of mucosal dysbiosis with associated niche specific changes in the gut microbiota. However, the key metabolic functions of these bacteria remain unclear. We performed a prospective observational study in patients undergoing elective surgery for colon cancer without mechanical bowel preparation (n = 18). Using 16 S rRNA gene sequencing we demonstrated that microbiota ecology appears to be cancer stage-specific and strongly associated with histological features of poor prognosis. Fusobacteria (p < 0.007) and ε- Proteobacteria (p < 0.01) were enriched on tumour when compared to adjacent normal mucosal tissue, and fusobacteria and β-Proteobacteria levels increased with advancing cancer stage (p = 0.014 and 0.002 respecitvely). Metabonomic analysis using 1H Magic Angle Spinning Nuclear Magnetic Resonsance  (MAS-NMR) spectroscopy, demonstrated increased abundance of taurine, isoglutamine, choline, lactate, phenylalanine and tyrosine and decreased levels of lipids and triglycerides in tumour relative to adjacent healthy tissue. Network analysis revealed that bacteria associated with poor prognostic features were not responsible for the modification of the cancer mucosal metabonome. Thus the colon cancer mucosal microbiome evolves with cancer stage to meet the demands of cancer metabolism. Passenger microbiota may play a role in the maintenance of cancer mucosal metabolic homeostasis but these metabolic functions may not be stage specific.
format article
author James Kinross
Reza Mirnezami
James Alexander
Richard Brown
Alasdair Scott
Dieter Galea
Kirill Veselkov
Rob Goldin
Ara Darzi
Jeremy Nicholson
Julian R. Marchesi
author_facet James Kinross
Reza Mirnezami
James Alexander
Richard Brown
Alasdair Scott
Dieter Galea
Kirill Veselkov
Rob Goldin
Ara Darzi
Jeremy Nicholson
Julian R. Marchesi
author_sort James Kinross
title A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy
title_short A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy
title_full A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy
title_fullStr A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy
title_full_unstemmed A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy
title_sort prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined mas 1hnmr and metataxonomic strategy
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/b793a52c69cf4912b4c52985ea7ffdc4
work_keys_str_mv AT jameskinross aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT rezamirnezami aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT jamesalexander aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT richardbrown aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT alasdairscott aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT dietergalea aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT kirillveselkov aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT robgoldin aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT aradarzi aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT jeremynicholson aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT julianrmarchesi aprospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT jameskinross prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT rezamirnezami prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT jamesalexander prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT richardbrown prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT alasdairscott prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT dietergalea prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT kirillveselkov prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT robgoldin prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT aradarzi prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT jeremynicholson prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
AT julianrmarchesi prospectiveanalysisofmucosalmicrobiomemetabonomeinteractionsincolorectalcancerusingacombinedmas1hnmrandmetataxonomicstrategy
_version_ 1718385171620691968