Deterministic culturing of single cells in 3D
Abstract Models using 3D cell culture techniques are increasingly accepted as the most biofidelic in vitro representations of tissues for research. These models are generated using biomatrices and bulk populations of cells derived from tissues or cell lines. We present an alternate method to culture...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b79e8c355aa34c89ab658a1182d4d1eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b79e8c355aa34c89ab658a1182d4d1eb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b79e8c355aa34c89ab658a1182d4d1eb2021-12-02T16:31:42ZDeterministic culturing of single cells in 3D10.1038/s41598-020-67674-32045-2322https://doaj.org/article/b79e8c355aa34c89ab658a1182d4d1eb2020-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-67674-3https://doaj.org/toc/2045-2322Abstract Models using 3D cell culture techniques are increasingly accepted as the most biofidelic in vitro representations of tissues for research. These models are generated using biomatrices and bulk populations of cells derived from tissues or cell lines. We present an alternate method to culture individually selected cells in relative isolation from the rest of the population under physiologically relevant matrix conditions. Matrix gel islands are spotted on a cell culture dish to act as support for receiving and culturing individual single cells; a glass capillary-based microfluidic setup is used to extract each desired single cell from a population and seed it on top of an island. Using examples of breast and colorectal cancers, we show that individual cells evolve into tumors or aspects of tumors displaying different characteristics of the initial cancer type and aggressiveness. By implementing a morphometry assay with luminal A breast cancer, we demonstrate the potential of the proposed approach to study phenotypic heterogeneity. Results reveal that intertumor heterogeneity increases with time in culture and that varying degrees of intratumor heterogeneity may originate from individually seeded cells. Moreover, we observe that a positive relationship exists between fast growing tumors and the size and heterogeneity of their nuclei.Rohil JainShirisha ChittiboyinaChun-Li ChangSophie A. LelièvreCagri A. SavranNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Rohil Jain Shirisha Chittiboyina Chun-Li Chang Sophie A. Lelièvre Cagri A. Savran Deterministic culturing of single cells in 3D |
description |
Abstract Models using 3D cell culture techniques are increasingly accepted as the most biofidelic in vitro representations of tissues for research. These models are generated using biomatrices and bulk populations of cells derived from tissues or cell lines. We present an alternate method to culture individually selected cells in relative isolation from the rest of the population under physiologically relevant matrix conditions. Matrix gel islands are spotted on a cell culture dish to act as support for receiving and culturing individual single cells; a glass capillary-based microfluidic setup is used to extract each desired single cell from a population and seed it on top of an island. Using examples of breast and colorectal cancers, we show that individual cells evolve into tumors or aspects of tumors displaying different characteristics of the initial cancer type and aggressiveness. By implementing a morphometry assay with luminal A breast cancer, we demonstrate the potential of the proposed approach to study phenotypic heterogeneity. Results reveal that intertumor heterogeneity increases with time in culture and that varying degrees of intratumor heterogeneity may originate from individually seeded cells. Moreover, we observe that a positive relationship exists between fast growing tumors and the size and heterogeneity of their nuclei. |
format |
article |
author |
Rohil Jain Shirisha Chittiboyina Chun-Li Chang Sophie A. Lelièvre Cagri A. Savran |
author_facet |
Rohil Jain Shirisha Chittiboyina Chun-Li Chang Sophie A. Lelièvre Cagri A. Savran |
author_sort |
Rohil Jain |
title |
Deterministic culturing of single cells in 3D |
title_short |
Deterministic culturing of single cells in 3D |
title_full |
Deterministic culturing of single cells in 3D |
title_fullStr |
Deterministic culturing of single cells in 3D |
title_full_unstemmed |
Deterministic culturing of single cells in 3D |
title_sort |
deterministic culturing of single cells in 3d |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/b79e8c355aa34c89ab658a1182d4d1eb |
work_keys_str_mv |
AT rohiljain deterministicculturingofsinglecellsin3d AT shirishachittiboyina deterministicculturingofsinglecellsin3d AT chunlichang deterministicculturingofsinglecellsin3d AT sophiealelievre deterministicculturingofsinglecellsin3d AT cagriasavran deterministicculturingofsinglecellsin3d |
_version_ |
1718383895307616256 |