Knowledge‐aided block sparse Bayesian learning STAP for phased‐array MIMO airborne radar
Abstract The phased‐array multiple‐input multiple‐output (PA‐MIMO) airborne radar faces more severe sample shortage problem than the conventional PA radar. Hence, it suffers from severe performance degradation when it adopts the traditional space‐time adaptive processing (STAP) methods. Fortunately,...
Guardado en:
Autores principales: | Ning Cui, Kun Xing, Keqing Duan, Zhongjun Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b7a3141149df48bd8f9f491160a7fef8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dense false target jamming suppression for airborne superimposed stepped frequency radar
por: Wei Chen, et al.
Publicado: (2021) -
A training sample selection method based on united generalised inner product statistics for STAP
por: Xinzhe Li, et al.
Publicado: (2021) -
Sum‐rate optimization scheme for time‐varying distributed MU‐MIMO systems
por: Shaoguo Xie, et al.
Publicado: (2021) -
Hierarchical optimization: A hybrid processing for downlink massive MU‐MIMO mmWave systems
por: Alvaro Javier Ortega
Publicado: (2021) -
Direction of arrival estimation in passive radar based on deep neural network
por: Xiaoyong Lyu, et al.
Publicado: (2021)