Knowledge‐aided block sparse Bayesian learning STAP for phased‐array MIMO airborne radar
Abstract The phased‐array multiple‐input multiple‐output (PA‐MIMO) airborne radar faces more severe sample shortage problem than the conventional PA radar. Hence, it suffers from severe performance degradation when it adopts the traditional space‐time adaptive processing (STAP) methods. Fortunately,...
Enregistré dans:
Auteurs principaux: | Ning Cui, Kun Xing, Keqing Duan, Zhongjun Yu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b7a3141149df48bd8f9f491160a7fef8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dense false target jamming suppression for airborne superimposed stepped frequency radar
par: Wei Chen, et autres
Publié: (2021) -
A training sample selection method based on united generalised inner product statistics for STAP
par: Xinzhe Li, et autres
Publié: (2021) -
Sum‐rate optimization scheme for time‐varying distributed MU‐MIMO systems
par: Shaoguo Xie, et autres
Publié: (2021) -
Hierarchical optimization: A hybrid processing for downlink massive MU‐MIMO mmWave systems
par: Alvaro Javier Ortega
Publié: (2021) -
Direction of arrival estimation in passive radar based on deep neural network
par: Xiaoyong Lyu, et autres
Publié: (2021)