Real Valued Functions for the BFKL Eigenvalue
We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn&g...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b7abea9f11bb4da7bf502c4d938fed5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> super Yang-Mills theory as a real valued function of two variables. We define new real valued functions of two complex conjugate variables that have a definite complexity analogous to the weight of the nested harmonic sums. We argue that those functions span a general space of functions for the BFKL eigenvalue at any order of the perturbation theory. |
---|