Real Valued Functions for the BFKL Eigenvalue

We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn&g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammad Joubat, Alex Prygarin
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/b7abea9f11bb4da7bf502c4d938fed5c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b7abea9f11bb4da7bf502c4d938fed5c
record_format dspace
spelling oai:doaj.org-article:b7abea9f11bb4da7bf502c4d938fed5c2021-11-25T19:09:51ZReal Valued Functions for the BFKL Eigenvalue10.3390/universe71104442218-1997https://doaj.org/article/b7abea9f11bb4da7bf502c4d938fed5c2021-11-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/444https://doaj.org/toc/2218-1997We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> super Yang-Mills theory as a real valued function of two variables. We define new real valued functions of two complex conjugate variables that have a definite complexity analogous to the weight of the nested harmonic sums. We argue that those functions span a general space of functions for the BFKL eigenvalue at any order of the perturbation theory.Mohammad JoubatAlex PrygarinMDPI AGarticleBFKL equationreal valued functionsmaximal transcendentalityElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 444, p 444 (2021)
institution DOAJ
collection DOAJ
language EN
topic BFKL equation
real valued functions
maximal transcendentality
Elementary particle physics
QC793-793.5
spellingShingle BFKL equation
real valued functions
maximal transcendentality
Elementary particle physics
QC793-793.5
Mohammad Joubat
Alex Prygarin
Real Valued Functions for the BFKL Eigenvalue
description We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> super Yang-Mills theory as a real valued function of two variables. We define new real valued functions of two complex conjugate variables that have a definite complexity analogous to the weight of the nested harmonic sums. We argue that those functions span a general space of functions for the BFKL eigenvalue at any order of the perturbation theory.
format article
author Mohammad Joubat
Alex Prygarin
author_facet Mohammad Joubat
Alex Prygarin
author_sort Mohammad Joubat
title Real Valued Functions for the BFKL Eigenvalue
title_short Real Valued Functions for the BFKL Eigenvalue
title_full Real Valued Functions for the BFKL Eigenvalue
title_fullStr Real Valued Functions for the BFKL Eigenvalue
title_full_unstemmed Real Valued Functions for the BFKL Eigenvalue
title_sort real valued functions for the bfkl eigenvalue
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/b7abea9f11bb4da7bf502c4d938fed5c
work_keys_str_mv AT mohammadjoubat realvaluedfunctionsforthebfkleigenvalue
AT alexprygarin realvaluedfunctionsforthebfkleigenvalue
_version_ 1718410238505254912