Real Valued Functions for the BFKL Eigenvalue
We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn&g...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b7abea9f11bb4da7bf502c4d938fed5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b7abea9f11bb4da7bf502c4d938fed5c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b7abea9f11bb4da7bf502c4d938fed5c2021-11-25T19:09:51ZReal Valued Functions for the BFKL Eigenvalue10.3390/universe71104442218-1997https://doaj.org/article/b7abea9f11bb4da7bf502c4d938fed5c2021-11-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/444https://doaj.org/toc/2218-1997We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> super Yang-Mills theory as a real valued function of two variables. We define new real valued functions of two complex conjugate variables that have a definite complexity analogous to the weight of the nested harmonic sums. We argue that those functions span a general space of functions for the BFKL eigenvalue at any order of the perturbation theory.Mohammad JoubatAlex PrygarinMDPI AGarticleBFKL equationreal valued functionsmaximal transcendentalityElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 444, p 444 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
BFKL equation real valued functions maximal transcendentality Elementary particle physics QC793-793.5 |
spellingShingle |
BFKL equation real valued functions maximal transcendentality Elementary particle physics QC793-793.5 Mohammad Joubat Alex Prygarin Real Valued Functions for the BFKL Eigenvalue |
description |
We consider known expressions for the eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> super Yang-Mills theory as a real valued function of two variables. We define new real valued functions of two complex conjugate variables that have a definite complexity analogous to the weight of the nested harmonic sums. We argue that those functions span a general space of functions for the BFKL eigenvalue at any order of the perturbation theory. |
format |
article |
author |
Mohammad Joubat Alex Prygarin |
author_facet |
Mohammad Joubat Alex Prygarin |
author_sort |
Mohammad Joubat |
title |
Real Valued Functions for the BFKL Eigenvalue |
title_short |
Real Valued Functions for the BFKL Eigenvalue |
title_full |
Real Valued Functions for the BFKL Eigenvalue |
title_fullStr |
Real Valued Functions for the BFKL Eigenvalue |
title_full_unstemmed |
Real Valued Functions for the BFKL Eigenvalue |
title_sort |
real valued functions for the bfkl eigenvalue |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/b7abea9f11bb4da7bf502c4d938fed5c |
work_keys_str_mv |
AT mohammadjoubat realvaluedfunctionsforthebfkleigenvalue AT alexprygarin realvaluedfunctionsforthebfkleigenvalue |
_version_ |
1718410238505254912 |