Cyberbullying Detection: Hybrid Models Based on Machine Learning and Natural Language Processing Techniques
The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment, insults, and attacks are commonly termed cyberbullying. The sheer volume of user-generated content has made it challenging to identify such illicit...
Guardado en:
Autores principales: | Chahat Raj, Ayush Agarwal, Gnana Bharathy, Bhuva Narayan, Mukesh Prasad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b7ac124425df485898e1232de3eb6bf3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Are Microcontrollers Ready for Deep Learning-Based Human Activity Recognition?
por: Atis Elsts, et al.
Publicado: (2021) -
A Multichannel Deep Learning Framework for Cyberbullying Detection on Social Media
por: Munif Alotaibi, et al.
Publicado: (2021) -
Multi-Task Learning with Task-Specific Feature Filtering in Low-Data Condition
por: Sang-woo Lee, et al.
Publicado: (2021) -
Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
por: Suwarno Liang
Publicado: (2021) -
Multi-Method Analysis of Medical Records and MRI Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning and Hybrid Methods
por: Badiea Abdulkarem Mohammed, et al.
Publicado: (2021)