An analysis of companion animal tick encounters as revealed by photograph‐based crowdsourced data

Abstract Background Community science is increasingly utilized to track important vectors of companion animal disease, providing a scalable, cost‐effective strategy for identifying new foci, changing phenology, and disease prevalence across wide geographies. Objectives We examined photographs of tic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Heather L. Kopsco, Roland J. Duhaime, Thomas N. Mather
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/b7b618ac26034073a91facd4d2b1d2f0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background Community science is increasingly utilized to track important vectors of companion animal disease, providing a scalable, cost‐effective strategy for identifying new foci, changing phenology, and disease prevalence across wide geographies. Objectives We examined photographs of ticks found attached to predominately dogs and cats reported to a photograph‐based tick surveillance program to identify potential areas for improvements in tick prevention education and risk intervention. Methods We compared estimated days of tick attachment using a Kruskal–Wallis one‐way analysis of variance, and a Pearson's chi‐square analysis of variance on the number of submissions by host type submitted for each season. Results The blacklegged tick (Ixodes scapularis) was the most common species reported (39.8%). Tick photographs submitted were almost entirely adults (89.5%), and ticks found on companion animals exhibited an estimated median engorgement time of 2.5 days. Ixodes scapularis displayed the highest median engorgement of the top tick species found feeding on companion animals (χ2 = 98.96, p < 0.001). Ticks were spotted year‐round; during spring and summer, ticks collected from pets represented 15.4 and 12.8% of all submissions, but increased to 28.5 and 35.2% during autumn and winter, respectively. Conclusions Crowdsourced data reveal that mostly adult ticks are detected on pets, and they are found at a point in the blood‐feeding process that puts pets at heightened risk for disease transmission. The increase in proportion of ticks found on pets during colder months may reveal a critical knowledge gap amongst pet owners regarding seasonal activity of I. scapularis, a vector of Lyme disease, providing an opportunity for prevention‐education.