A-iLearn: An adaptive incremental learning model for spoof fingerprint detection
Incremental learning enables the learner to accommodate new knowledge without retraining the existing model. It is a challenging task that requires learning from new data and preserving the knowledge extracted from the previously accessed data. This challenge is known as the stability-plasticity dil...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b7ba07c72783430c8d1e5af62c2dcb49 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b7ba07c72783430c8d1e5af62c2dcb49 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b7ba07c72783430c8d1e5af62c2dcb492021-11-28T04:39:29ZA-iLearn: An adaptive incremental learning model for spoof fingerprint detection2666-827010.1016/j.mlwa.2021.100210https://doaj.org/article/b7ba07c72783430c8d1e5af62c2dcb492022-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666827021001055https://doaj.org/toc/2666-8270Incremental learning enables the learner to accommodate new knowledge without retraining the existing model. It is a challenging task that requires learning from new data and preserving the knowledge extracted from the previously accessed data. This challenge is known as the stability-plasticity dilemma. We propose A-iLearn, a generic model for incremental learning which overcomes the stability-plasticity dilemma by carefully integrating the ensemble of base classifiers trained on new data with the current ensemble without retraining the model from scratch using entire data. We demonstrate the efficacy of the proposed A-iLearn model on spoof fingerprint detection application. One of the significant challenges associated with spoof fingerprint detection is the performance drop on spoofs generated using new fabrication materials. A-iLearn is an adaptive incremental learning model that adapts to the features of the “live” and “spoof” fingerprint images and efficiently recognizes the new spoof fingerprints and the known spoof fingerprints when the new data is available. To the best of our knowledge, A-iLearn is the first attempt in incremental learning algorithms that adapts to the properties of data for generating a diverse ensemble of base classifiers. From the experiments conducted on standard high-dimensional datasets LivDet 2011, LivDet 2013 and LivDet 2015, we show that the performance gain on new fake materials is significantly high. On average, we achieve 49.57% improvement in accuracy between the consecutive learning phases.Shivang AgarwalAjita RattaniC. Ravindranath ChowdaryElsevierarticleIncremental learningStability-plasticity dilemmaCatastrophic forgettingSpoof fingerprint detectionCyberneticsQ300-390Electronic computers. Computer scienceQA75.5-76.95ENMachine Learning with Applications, Vol 7, Iss , Pp 100210- (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Incremental learning Stability-plasticity dilemma Catastrophic forgetting Spoof fingerprint detection Cybernetics Q300-390 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Incremental learning Stability-plasticity dilemma Catastrophic forgetting Spoof fingerprint detection Cybernetics Q300-390 Electronic computers. Computer science QA75.5-76.95 Shivang Agarwal Ajita Rattani C. Ravindranath Chowdary A-iLearn: An adaptive incremental learning model for spoof fingerprint detection |
description |
Incremental learning enables the learner to accommodate new knowledge without retraining the existing model. It is a challenging task that requires learning from new data and preserving the knowledge extracted from the previously accessed data. This challenge is known as the stability-plasticity dilemma. We propose A-iLearn, a generic model for incremental learning which overcomes the stability-plasticity dilemma by carefully integrating the ensemble of base classifiers trained on new data with the current ensemble without retraining the model from scratch using entire data. We demonstrate the efficacy of the proposed A-iLearn model on spoof fingerprint detection application. One of the significant challenges associated with spoof fingerprint detection is the performance drop on spoofs generated using new fabrication materials. A-iLearn is an adaptive incremental learning model that adapts to the features of the “live” and “spoof” fingerprint images and efficiently recognizes the new spoof fingerprints and the known spoof fingerprints when the new data is available. To the best of our knowledge, A-iLearn is the first attempt in incremental learning algorithms that adapts to the properties of data for generating a diverse ensemble of base classifiers. From the experiments conducted on standard high-dimensional datasets LivDet 2011, LivDet 2013 and LivDet 2015, we show that the performance gain on new fake materials is significantly high. On average, we achieve 49.57% improvement in accuracy between the consecutive learning phases. |
format |
article |
author |
Shivang Agarwal Ajita Rattani C. Ravindranath Chowdary |
author_facet |
Shivang Agarwal Ajita Rattani C. Ravindranath Chowdary |
author_sort |
Shivang Agarwal |
title |
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection |
title_short |
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection |
title_full |
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection |
title_fullStr |
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection |
title_full_unstemmed |
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection |
title_sort |
a-ilearn: an adaptive incremental learning model for spoof fingerprint detection |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://doaj.org/article/b7ba07c72783430c8d1e5af62c2dcb49 |
work_keys_str_mv |
AT shivangagarwal ailearnanadaptiveincrementallearningmodelforspooffingerprintdetection AT ajitarattani ailearnanadaptiveincrementallearningmodelforspooffingerprintdetection AT cravindranathchowdary ailearnanadaptiveincrementallearningmodelforspooffingerprintdetection |
_version_ |
1718408281007849472 |