S2A: Scale-Attention-Aware Networks for Video Super-Resolution

Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Taian Guo, Tao Dai, Ling Liu, Zexuan Zhu, Shu-Tao Xia
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models. To address this problem, we propose a novel SAA network, that is, Scale-and-Attention-Aware Networks, to apply different attention to different temporal-length streams, while further exploring both spatial and channel attention on separate streams with a newly proposed Criss-Cross Channel Attention Module (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>C</mi><mn>3</mn></msup><mi>A</mi><mi>M</mi></mrow></semantics></math></inline-formula>). Experiments on public VSR datasets demonstrate the superiority of our method over other state-of-the-art methods in terms of both quantitative and qualitative metrics.