S2A: Scale-Attention-Aware Networks for Video Super-Resolution
Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b7d53997d2bb46e89a8f6f647cae8cef |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b7d53997d2bb46e89a8f6f647cae8cef2021-11-25T17:29:18ZS2A: Scale-Attention-Aware Networks for Video Super-Resolution10.3390/e231113981099-4300https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef2021-10-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1398https://doaj.org/toc/1099-4300Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models. To address this problem, we propose a novel SAA network, that is, Scale-and-Attention-Aware Networks, to apply different attention to different temporal-length streams, while further exploring both spatial and channel attention on separate streams with a newly proposed Criss-Cross Channel Attention Module (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>C</mi><mn>3</mn></msup><mi>A</mi><mi>M</mi></mrow></semantics></math></inline-formula>). Experiments on public VSR datasets demonstrate the superiority of our method over other state-of-the-art methods in terms of both quantitative and qualitative metrics.Taian GuoTao DaiLing LiuZexuan ZhuShu-Tao XiaMDPI AGarticlescale-and-attention-awarecriss-cross channel attentionvideo super-resolutionScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1398, p 1398 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
scale-and-attention-aware criss-cross channel attention video super-resolution Science Q Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
scale-and-attention-aware criss-cross channel attention video super-resolution Science Q Astrophysics QB460-466 Physics QC1-999 Taian Guo Tao Dai Ling Liu Zexuan Zhu Shu-Tao Xia S2A: Scale-Attention-Aware Networks for Video Super-Resolution |
description |
Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models. To address this problem, we propose a novel SAA network, that is, Scale-and-Attention-Aware Networks, to apply different attention to different temporal-length streams, while further exploring both spatial and channel attention on separate streams with a newly proposed Criss-Cross Channel Attention Module (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>C</mi><mn>3</mn></msup><mi>A</mi><mi>M</mi></mrow></semantics></math></inline-formula>). Experiments on public VSR datasets demonstrate the superiority of our method over other state-of-the-art methods in terms of both quantitative and qualitative metrics. |
format |
article |
author |
Taian Guo Tao Dai Ling Liu Zexuan Zhu Shu-Tao Xia |
author_facet |
Taian Guo Tao Dai Ling Liu Zexuan Zhu Shu-Tao Xia |
author_sort |
Taian Guo |
title |
S2A: Scale-Attention-Aware Networks for Video Super-Resolution |
title_short |
S2A: Scale-Attention-Aware Networks for Video Super-Resolution |
title_full |
S2A: Scale-Attention-Aware Networks for Video Super-Resolution |
title_fullStr |
S2A: Scale-Attention-Aware Networks for Video Super-Resolution |
title_full_unstemmed |
S2A: Scale-Attention-Aware Networks for Video Super-Resolution |
title_sort |
s2a: scale-attention-aware networks for video super-resolution |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef |
work_keys_str_mv |
AT taianguo s2ascaleattentionawarenetworksforvideosuperresolution AT taodai s2ascaleattentionawarenetworksforvideosuperresolution AT lingliu s2ascaleattentionawarenetworksforvideosuperresolution AT zexuanzhu s2ascaleattentionawarenetworksforvideosuperresolution AT shutaoxia s2ascaleattentionawarenetworksforvideosuperresolution |
_version_ |
1718412307131793408 |