S2A: Scale-Attention-Aware Networks for Video Super-Resolution

Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Taian Guo, Tao Dai, Ling Liu, Zexuan Zhu, Shu-Tao Xia
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b7d53997d2bb46e89a8f6f647cae8cef
record_format dspace
spelling oai:doaj.org-article:b7d53997d2bb46e89a8f6f647cae8cef2021-11-25T17:29:18ZS2A: Scale-Attention-Aware Networks for Video Super-Resolution10.3390/e231113981099-4300https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef2021-10-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1398https://doaj.org/toc/1099-4300Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models. To address this problem, we propose a novel SAA network, that is, Scale-and-Attention-Aware Networks, to apply different attention to different temporal-length streams, while further exploring both spatial and channel attention on separate streams with a newly proposed Criss-Cross Channel Attention Module (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>C</mi><mn>3</mn></msup><mi>A</mi><mi>M</mi></mrow></semantics></math></inline-formula>). Experiments on public VSR datasets demonstrate the superiority of our method over other state-of-the-art methods in terms of both quantitative and qualitative metrics.Taian GuoTao DaiLing LiuZexuan ZhuShu-Tao XiaMDPI AGarticlescale-and-attention-awarecriss-cross channel attentionvideo super-resolutionScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1398, p 1398 (2021)
institution DOAJ
collection DOAJ
language EN
topic scale-and-attention-aware
criss-cross channel attention
video super-resolution
Science
Q
Astrophysics
QB460-466
Physics
QC1-999
spellingShingle scale-and-attention-aware
criss-cross channel attention
video super-resolution
Science
Q
Astrophysics
QB460-466
Physics
QC1-999
Taian Guo
Tao Dai
Ling Liu
Zexuan Zhu
Shu-Tao Xia
S2A: Scale-Attention-Aware Networks for Video Super-Resolution
description Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models. To address this problem, we propose a novel SAA network, that is, Scale-and-Attention-Aware Networks, to apply different attention to different temporal-length streams, while further exploring both spatial and channel attention on separate streams with a newly proposed Criss-Cross Channel Attention Module (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>C</mi><mn>3</mn></msup><mi>A</mi><mi>M</mi></mrow></semantics></math></inline-formula>). Experiments on public VSR datasets demonstrate the superiority of our method over other state-of-the-art methods in terms of both quantitative and qualitative metrics.
format article
author Taian Guo
Tao Dai
Ling Liu
Zexuan Zhu
Shu-Tao Xia
author_facet Taian Guo
Tao Dai
Ling Liu
Zexuan Zhu
Shu-Tao Xia
author_sort Taian Guo
title S2A: Scale-Attention-Aware Networks for Video Super-Resolution
title_short S2A: Scale-Attention-Aware Networks for Video Super-Resolution
title_full S2A: Scale-Attention-Aware Networks for Video Super-Resolution
title_fullStr S2A: Scale-Attention-Aware Networks for Video Super-Resolution
title_full_unstemmed S2A: Scale-Attention-Aware Networks for Video Super-Resolution
title_sort s2a: scale-attention-aware networks for video super-resolution
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef
work_keys_str_mv AT taianguo s2ascaleattentionawarenetworksforvideosuperresolution
AT taodai s2ascaleattentionawarenetworksforvideosuperresolution
AT lingliu s2ascaleattentionawarenetworksforvideosuperresolution
AT zexuanzhu s2ascaleattentionawarenetworksforvideosuperresolution
AT shutaoxia s2ascaleattentionawarenetworksforvideosuperresolution
_version_ 1718412307131793408