S2A: Scale-Attention-Aware Networks for Video Super-Resolution
Convolutional Neural Networks (CNNs) have been widely used in video super-resolution (VSR). Most existing VSR methods focus on how to utilize the information of multiple frames, while neglecting the feature correlations of the intermediate features, thus limiting the feature expression of the models...
Enregistré dans:
Auteurs principaux: | Taian Guo, Tao Dai, Ling Liu, Zexuan Zhu, Shu-Tao Xia |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b7d53997d2bb46e89a8f6f647cae8cef |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
par: Xiangde Zhang, et autres
Publié: (2021) -
A Nighttime Vehicle Detection Method with Attentive GAN for Accurate Classification and Regression
par: Yan Liu, et autres
Publié: (2021) -
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
par: Udit Sharma, et autres
Publié: (2021) -
Asymmetric bias-induced barrier lowering as an alternative origin of current rectification in geometric diodes
par: Mengmeng Bai, et autres
Publié: (2021) -
Realization of quasicrystalline quadrupole topological insulators in electrical circuits
par: Bo Lv, et autres
Publié: (2021)