Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics

ABSTRACT The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate contain...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eldar Yagmurov, Darya Tsibulskaya, Alexey Livenskyi, Marina Serebryakova, Yury I. Wolf, Sergei Borukhov, Konstantin Severinov, Svetlana Dubiley
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/b80e8b2de51b4e6eac6f5593db304134
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b80e8b2de51b4e6eac6f5593db304134
record_format dspace
spelling oai:doaj.org-article:b80e8b2de51b4e6eac6f5593db3041342021-11-15T15:57:03ZHistidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics10.1128/mBio.00497-202150-7511https://doaj.org/article/b80e8b2de51b4e6eac6f5593db3041342020-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00497-20https://doaj.org/toc/2150-7511ABSTRACT The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive. IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.Eldar YagmurovDarya TsibulskayaAlexey LivenskyiMarina SerebryakovaYury I. WolfSergei BorukhovKonstantin SeverinovSvetlana DubileyAmerican Society for MicrobiologyarticleHinTRiPPsantibioticshistidine-triad proteinsmicrocin Cpeptide-nucleotidesMicrobiologyQR1-502ENmBio, Vol 11, Iss 2 (2020)
institution DOAJ
collection DOAJ
language EN
topic HinT
RiPPs
antibiotics
histidine-triad proteins
microcin C
peptide-nucleotides
Microbiology
QR1-502
spellingShingle HinT
RiPPs
antibiotics
histidine-triad proteins
microcin C
peptide-nucleotides
Microbiology
QR1-502
Eldar Yagmurov
Darya Tsibulskaya
Alexey Livenskyi
Marina Serebryakova
Yury I. Wolf
Sergei Borukhov
Konstantin Severinov
Svetlana Dubiley
Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics
description ABSTRACT The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive. IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.
format article
author Eldar Yagmurov
Darya Tsibulskaya
Alexey Livenskyi
Marina Serebryakova
Yury I. Wolf
Sergei Borukhov
Konstantin Severinov
Svetlana Dubiley
author_facet Eldar Yagmurov
Darya Tsibulskaya
Alexey Livenskyi
Marina Serebryakova
Yury I. Wolf
Sergei Borukhov
Konstantin Severinov
Svetlana Dubiley
author_sort Eldar Yagmurov
title Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics
title_short Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics
title_full Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics
title_fullStr Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics
title_full_unstemmed Histidine-Triad Hydrolases Provide Resistance to Peptide-Nucleotide Antibiotics
title_sort histidine-triad hydrolases provide resistance to peptide-nucleotide antibiotics
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/b80e8b2de51b4e6eac6f5593db304134
work_keys_str_mv AT eldaryagmurov histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
AT daryatsibulskaya histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
AT alexeylivenskyi histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
AT marinaserebryakova histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
AT yuryiwolf histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
AT sergeiborukhov histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
AT konstantinseverinov histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
AT svetlanadubiley histidinetriadhydrolasesprovideresistancetopeptidenucleotideantibiotics
_version_ 1718427048581529600