Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells

Chika Kuroda,1,2,* Katsuya Ueda,1,3,* Hisao Haniu,1,3–5 Haruka Ishida,1,4 Satomi Okano,1,4 Takashi Takizawa,5 Atsushi Sobajima,5 Takayuki Kamanaka,5 Kazushige Yoshida,5 Masanori Okamoto,5 Tamotsu Tsukahara,6 Yoshikazu Matsuda,7 Kaoru Aoki,8 Hiroyuki Kato,5 Naoto Saito1,3–5 1Inst...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kuroda C, Ueda K, Haniu H, Ishida H, Okano S, Takizawa T, Sobajima A, Kamanaka T, Yoshida K, Okamoto M, Tsukahara T, Matsuda Y, Aoki K, Kato H, Saito N
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://doaj.org/article/b8168d09d47d416c977ad4cb6760c8e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b8168d09d47d416c977ad4cb6760c8e2
record_format dspace
spelling oai:doaj.org-article:b8168d09d47d416c977ad4cb6760c8e22021-12-02T09:28:49ZDifferent aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells1178-2013https://doaj.org/article/b8168d09d47d416c977ad4cb6760c8e22018-10-01T00:00:00Zhttps://www.dovepress.com/different-aggregation-and-shape-characteristics-of-carbon-materials-af-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Chika Kuroda,1,2,* Katsuya Ueda,1,3,* Hisao Haniu,1,3–5 Haruka Ishida,1,4 Satomi Okano,1,4 Takashi Takizawa,5 Atsushi Sobajima,5 Takayuki Kamanaka,5 Kazushige Yoshida,5 Masanori Okamoto,5 Tamotsu Tsukahara,6 Yoshikazu Matsuda,7 Kaoru Aoki,8 Hiroyuki Kato,5 Naoto Saito1,3–5 1Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 2Department of Orthopaedic Surgery, Graduate School of Medicine, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 3Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 4Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 5Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan; 6Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Bunkyo-machi, Nagasaki, Japan; 7Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Komuro, Ina-machi, Saitama, Japan; 8Physical Therapy Division, School of Health Sciences, Shinshu University, Asahi, Matsumoto, Nagano, Japan *These authors contributed equally to this work Introduction: Carbon nanotubes (CNTs) have various shapes, including needle-like shapes and curled shapes, and the cytotoxicity and carcinogenicity of CNTs differ depending on their shapes and surface modifications. However, the biological responses induced by CNTs and related mechanisms according to the dispersion state of CNTs have not been extensively studied.Materials and methods: We prepared multiwalled CNTs (MWCNTs) showing different dispersions and evaluated these MWCNTs in RAW264 cells to determine cytotoxicity, cellular uptake, and immune responses. Furthermore, RAW264 cells were also used to compare the cellular uptake and cytotoxicity of fibrous MWCNTs and spherical carbon nanohorns (CNHs) exhibiting the same degree of dispersion.Results: Our analysis showed that the cellular uptake, localization, and inflammatory responses of MWCNTs differed depending on the dispersion state. Moreover, there were differences in uptake between MWCNTs and CNHs, even showing the same degree of dispersion. These findings suggested that receptors related to cytotoxicity and immune responses differed depending on the aggregated state of MWCNTs and surface modification with a dispersant. Furthermore, our results suggested that the receptors recognized by the cells differed depending on the particle shape.Conclusion: Therefore, to apply MWCNTs as a biomaterial, it is important to determine the carcinogenicity and toxicity of the CNTs and to examine different biological responses induced by varying shapes, dispersion states, and surface modifications of particles. Keywords: multiwalled carbon nanotubes, aggregation, carbon nanohorns, cytotoxicity, immune response, cellular uptakeKuroda CUeda KHaniu HIshida HOkano STakizawa TSobajima AKamanaka TYoshida KOkamoto MTsukahara TMatsuda YAoki KKato HSaito NDove Medical Pressarticlemultiwalled carbon nanotubesaggregationcarbon nanohornscytotoxicityimmune responsecellular uptakeMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 6079-6088 (2018)
institution DOAJ
collection DOAJ
language EN
topic multiwalled carbon nanotubes
aggregation
carbon nanohorns
cytotoxicity
immune response
cellular uptake
Medicine (General)
R5-920
spellingShingle multiwalled carbon nanotubes
aggregation
carbon nanohorns
cytotoxicity
immune response
cellular uptake
Medicine (General)
R5-920
Kuroda C
Ueda K
Haniu H
Ishida H
Okano S
Takizawa T
Sobajima A
Kamanaka T
Yoshida K
Okamoto M
Tsukahara T
Matsuda Y
Aoki K
Kato H
Saito N
Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells
description Chika Kuroda,1,2,* Katsuya Ueda,1,3,* Hisao Haniu,1,3–5 Haruka Ishida,1,4 Satomi Okano,1,4 Takashi Takizawa,5 Atsushi Sobajima,5 Takayuki Kamanaka,5 Kazushige Yoshida,5 Masanori Okamoto,5 Tamotsu Tsukahara,6 Yoshikazu Matsuda,7 Kaoru Aoki,8 Hiroyuki Kato,5 Naoto Saito1,3–5 1Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 2Department of Orthopaedic Surgery, Graduate School of Medicine, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 3Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 4Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan; 5Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan; 6Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Bunkyo-machi, Nagasaki, Japan; 7Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Komuro, Ina-machi, Saitama, Japan; 8Physical Therapy Division, School of Health Sciences, Shinshu University, Asahi, Matsumoto, Nagano, Japan *These authors contributed equally to this work Introduction: Carbon nanotubes (CNTs) have various shapes, including needle-like shapes and curled shapes, and the cytotoxicity and carcinogenicity of CNTs differ depending on their shapes and surface modifications. However, the biological responses induced by CNTs and related mechanisms according to the dispersion state of CNTs have not been extensively studied.Materials and methods: We prepared multiwalled CNTs (MWCNTs) showing different dispersions and evaluated these MWCNTs in RAW264 cells to determine cytotoxicity, cellular uptake, and immune responses. Furthermore, RAW264 cells were also used to compare the cellular uptake and cytotoxicity of fibrous MWCNTs and spherical carbon nanohorns (CNHs) exhibiting the same degree of dispersion.Results: Our analysis showed that the cellular uptake, localization, and inflammatory responses of MWCNTs differed depending on the dispersion state. Moreover, there were differences in uptake between MWCNTs and CNHs, even showing the same degree of dispersion. These findings suggested that receptors related to cytotoxicity and immune responses differed depending on the aggregated state of MWCNTs and surface modification with a dispersant. Furthermore, our results suggested that the receptors recognized by the cells differed depending on the particle shape.Conclusion: Therefore, to apply MWCNTs as a biomaterial, it is important to determine the carcinogenicity and toxicity of the CNTs and to examine different biological responses induced by varying shapes, dispersion states, and surface modifications of particles. Keywords: multiwalled carbon nanotubes, aggregation, carbon nanohorns, cytotoxicity, immune response, cellular uptake
format article
author Kuroda C
Ueda K
Haniu H
Ishida H
Okano S
Takizawa T
Sobajima A
Kamanaka T
Yoshida K
Okamoto M
Tsukahara T
Matsuda Y
Aoki K
Kato H
Saito N
author_facet Kuroda C
Ueda K
Haniu H
Ishida H
Okano S
Takizawa T
Sobajima A
Kamanaka T
Yoshida K
Okamoto M
Tsukahara T
Matsuda Y
Aoki K
Kato H
Saito N
author_sort Kuroda C
title Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells
title_short Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells
title_full Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells
title_fullStr Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells
title_full_unstemmed Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells
title_sort different aggregation and shape characteristics of carbon materials affect biological responses in raw264 cells
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/b8168d09d47d416c977ad4cb6760c8e2
work_keys_str_mv AT kurodac differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT uedak differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT haniuh differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT ishidah differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT okanos differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT takizawat differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT sobajimaa differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT kamanakat differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT yoshidak differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT okamotom differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT tsukaharat differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT matsuday differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT aokik differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT katoh differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
AT saiton differentaggregationandshapecharacteristicsofcarbonmaterialsaffectbiologicalresponsesinraw264cells
_version_ 1718398143323701248