CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
Colonoscopy is considered the gold-standard investigation for colorectal cancer screening. However, the polyps miss rate in clinical practice is relatively high due to different factors. This presents an opportunity to use AI models to automatically detect and segment polyps, supporting clinicians t...
Guardado en:
Autores principales: | Le Thi Thu Hong, Nguyen Chi Thanh, Tran Quoc Long |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8277e09f22b489a93e75b1ff6f8e24d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DW-UNet: Loss Balance under Local-Patch for 3D Infection Segmentation from COVID-19 CT Images
por: Cheng Chen, et al.
Publicado: (2021) -
MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation
por: Parvez Ahmad, et al.
Publicado: (2021) -
Histomorphological analysis of gastric polyps
por: Anjali D Amarapurkar, et al.
Publicado: (2021) -
Connected-UNets: a deep learning architecture for breast mass segmentation
por: Asma Baccouche, et al.
Publicado: (2021) -
Concatenated Residual Attention UNet for Semantic Segmentation of Urban Green Space
por: Guoqiang Men, et al.
Publicado: (2021)