CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
Colonoscopy is considered the gold-standard investigation for colorectal cancer screening. However, the polyps miss rate in clinical practice is relatively high due to different factors. This presents an opportunity to use AI models to automatically detect and segment polyps, supporting clinicians t...
Enregistré dans:
Auteurs principaux: | Le Thi Thu Hong, Nguyen Chi Thanh, Tran Quoc Long |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b8277e09f22b489a93e75b1ff6f8e24d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
DW-UNet: Loss Balance under Local-Patch for 3D Infection Segmentation from COVID-19 CT Images
par: Cheng Chen, et autres
Publié: (2021) -
MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation
par: Parvez Ahmad, et autres
Publié: (2021) -
Histomorphological analysis of gastric polyps
par: Anjali D Amarapurkar, et autres
Publié: (2021) -
Connected-UNets: a deep learning architecture for breast mass segmentation
par: Asma Baccouche, et autres
Publié: (2021) -
Concatenated Residual Attention UNet for Semantic Segmentation of Urban Green Space
par: Guoqiang Men, et autres
Publié: (2021)