CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
Colonoscopy is considered the gold-standard investigation for colorectal cancer screening. However, the polyps miss rate in clinical practice is relatively high due to different factors. This presents an opportunity to use AI models to automatically detect and segment polyps, supporting clinicians t...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8277e09f22b489a93e75b1ff6f8e24d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!