Shape Memory Alloy Hybrid Composites for Improving Impact Properties
This paper investigates the method to improve the property that can decrease the impact response of composite plate. Embedding the super-elastic shape memory alloy wires into composite plates has increased the attention of material researchers. Super-elastic shape memory alloy has the properties of...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Kaunas University of Technology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8337f374ff7417fb5c6714c4f6e1b54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper investigates the method to improve the property that can decrease the impact response of composite plate. Embedding the super-elastic shape memory alloy wires into composite plates has increased the attention of material researchers. Super-elastic shape memory alloy has the properties of absorbing mechanical energy, large recoverable deformation and so on. In this study, experiments were conducted to analyze the impact properties of composite plates with Ni-Ti SMA wires. Composite plates with Ni-Ti SMA wires and without Ni-Ti SMA wires were subjected to two impacts respectively. This study measured the responses of two impacts. The results showed that the composite plate with Ni-Ti SMA wires were subjected to a second impact with a peak deflection of 5.47 mm, which was only 0.22 mm larger than the first impact. The relevant data of the composite plate without Ni-Ti SMA wires were 9.02 mm, 1.22 mm, and serious damage occurred. It was verified that the Ni-Ti SMA wires improved the impact resistance of the composite plate. After studying the impact tests of variable diameters of SMA wires embedded at the low layer of composite plate, it was shown that as the diameter of SMA wires increased, the impact resistance of composite plates was improved. |
---|