An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
Recent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b85398afda6848d58207bec082e4d85b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b85398afda6848d58207bec082e4d85b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b85398afda6848d58207bec082e4d85b2021-11-25T14:36:26ZAn evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles10.7554/eLife.635422050-084Xe63542https://doaj.org/article/b85398afda6848d58207bec082e4d85b2021-05-01T00:00:00Zhttps://elifesciences.org/articles/63542https://doaj.org/toc/2050-084XRecent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these results as a benchmark, we develop an evolutionary model defined as birth-death process for replication origins and use it to identify the evolutionary biases that shape the replication timing profiles. Comparing different evolutionary models with data, we find that replication origin birth and death events are mainly driven by two evolutionary pressures, the first imposes that events leading to higher double-stall probability of replication forks are penalized, while the second makes less efficient origins more prone to evolutionary loss. This analysis provides an empirically grounded predictive framework for quantitative evolutionary studies of the replication timing program.Rossana DroghettiNicolas AgierGilles FischerMarco GherardiMarco Cosentino LagomarsinoeLife Sciences Publications LtdarticleyeastreplicationevolutionLachanceamathematical modellingMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
yeast replication evolution Lachancea mathematical modelling Medicine R Science Q Biology (General) QH301-705.5 |
spellingShingle |
yeast replication evolution Lachancea mathematical modelling Medicine R Science Q Biology (General) QH301-705.5 Rossana Droghetti Nicolas Agier Gilles Fischer Marco Gherardi Marco Cosentino Lagomarsino An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles |
description |
Recent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these results as a benchmark, we develop an evolutionary model defined as birth-death process for replication origins and use it to identify the evolutionary biases that shape the replication timing profiles. Comparing different evolutionary models with data, we find that replication origin birth and death events are mainly driven by two evolutionary pressures, the first imposes that events leading to higher double-stall probability of replication forks are penalized, while the second makes less efficient origins more prone to evolutionary loss. This analysis provides an empirically grounded predictive framework for quantitative evolutionary studies of the replication timing program. |
format |
article |
author |
Rossana Droghetti Nicolas Agier Gilles Fischer Marco Gherardi Marco Cosentino Lagomarsino |
author_facet |
Rossana Droghetti Nicolas Agier Gilles Fischer Marco Gherardi Marco Cosentino Lagomarsino |
author_sort |
Rossana Droghetti |
title |
An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles |
title_short |
An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles |
title_full |
An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles |
title_fullStr |
An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles |
title_full_unstemmed |
An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles |
title_sort |
evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles |
publisher |
eLife Sciences Publications Ltd |
publishDate |
2021 |
url |
https://doaj.org/article/b85398afda6848d58207bec082e4d85b |
work_keys_str_mv |
AT rossanadroghetti anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT nicolasagier anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT gillesfischer anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT marcogherardi anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT marcocosentinolagomarsino anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT rossanadroghetti evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT nicolasagier evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT gillesfischer evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT marcogherardi evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles AT marcocosentinolagomarsino evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles |
_version_ |
1718413402140835840 |