An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles

Recent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rossana Droghetti, Nicolas Agier, Gilles Fischer, Marco Gherardi, Marco Cosentino Lagomarsino
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/b85398afda6848d58207bec082e4d85b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:b85398afda6848d58207bec082e4d85b
record_format dspace
spelling oai:doaj.org-article:b85398afda6848d58207bec082e4d85b2021-11-25T14:36:26ZAn evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles10.7554/eLife.635422050-084Xe63542https://doaj.org/article/b85398afda6848d58207bec082e4d85b2021-05-01T00:00:00Zhttps://elifesciences.org/articles/63542https://doaj.org/toc/2050-084XRecent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these results as a benchmark, we develop an evolutionary model defined as birth-death process for replication origins and use it to identify the evolutionary biases that shape the replication timing profiles. Comparing different evolutionary models with data, we find that replication origin birth and death events are mainly driven by two evolutionary pressures, the first imposes that events leading to higher double-stall probability of replication forks are penalized, while the second makes less efficient origins more prone to evolutionary loss. This analysis provides an empirically grounded predictive framework for quantitative evolutionary studies of the replication timing program.Rossana DroghettiNicolas AgierGilles FischerMarco GherardiMarco Cosentino LagomarsinoeLife Sciences Publications LtdarticleyeastreplicationevolutionLachanceamathematical modellingMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic yeast
replication
evolution
Lachancea
mathematical modelling
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle yeast
replication
evolution
Lachancea
mathematical modelling
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Rossana Droghetti
Nicolas Agier
Gilles Fischer
Marco Gherardi
Marco Cosentino Lagomarsino
An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
description Recent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these results as a benchmark, we develop an evolutionary model defined as birth-death process for replication origins and use it to identify the evolutionary biases that shape the replication timing profiles. Comparing different evolutionary models with data, we find that replication origin birth and death events are mainly driven by two evolutionary pressures, the first imposes that events leading to higher double-stall probability of replication forks are penalized, while the second makes less efficient origins more prone to evolutionary loss. This analysis provides an empirically grounded predictive framework for quantitative evolutionary studies of the replication timing program.
format article
author Rossana Droghetti
Nicolas Agier
Gilles Fischer
Marco Gherardi
Marco Cosentino Lagomarsino
author_facet Rossana Droghetti
Nicolas Agier
Gilles Fischer
Marco Gherardi
Marco Cosentino Lagomarsino
author_sort Rossana Droghetti
title An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
title_short An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
title_full An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
title_fullStr An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
title_full_unstemmed An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
title_sort evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/b85398afda6848d58207bec082e4d85b
work_keys_str_mv AT rossanadroghetti anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT nicolasagier anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT gillesfischer anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT marcogherardi anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT marcocosentinolagomarsino anevolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT rossanadroghetti evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT nicolasagier evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT gillesfischer evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT marcogherardi evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
AT marcocosentinolagomarsino evolutionarymodelidentifiesthemainevolutionarybiasesfortheevolutionofgenomereplicationprofiles
_version_ 1718413402140835840