Electrical assessment of georeferenced distribution network due to electric vehicles deployment
Several cities worldwide are focused to reduce the environmental degradation based on the deployment and integration of renewable energies and electric vehicles (EV) into the distribution network. The first one replaces electricity produced by fossil fuels with solar, wind or hydro power plants, whi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | ES |
Publicado: |
Editorial Universitaria
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b853fff2875f46568e6651f4cf461d2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b853fff2875f46568e6651f4cf461d2b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b853fff2875f46568e6651f4cf461d2b2021-11-16T18:55:04ZElectrical assessment of georeferenced distribution network due to electric vehicles deployment1680-88942219-671410.33412/idt.v16.1.2441https://doaj.org/article/b853fff2875f46568e6651f4cf461d2b2020-01-01T00:00:00Zhttps://revistas.utp.ac.pa/index.php/id-tecnologico/article/view/2441https://doaj.org/toc/1680-8894https://doaj.org/toc/2219-6714Several cities worldwide are focused to reduce the environmental degradation based on the deployment and integration of renewable energies and electric vehicles (EV) into the distribution network. The first one replaces electricity produced by fossil fuels with solar, wind or hydro power plants, whilst the second one is a feasible alternative to substitute internal combustion engine (ICE) vehicles with eco-friendly vehicles. Set in this context, this paper proposes an examination about the main effects in a georeferenced distribution system when non-linear loads are connected to the grid. The distribution network model contemplates georeferenced data from customers, where unbalanced currents due to the customer’s consumption in each distribution transformer is evaluated using a variety of coefficient for commercial and residential load models. Voltage unbalance, harmonics and load flow analysis is performed in PowerFactory to determine the impacts of EVs to the grid.Alex ValenzuelaCarlos BarreraEsteban IngaEditorial Universitariaarticleharmonics analysis, unbalanced loads, non-linear loads, georeferenced distribution network, electric vehicle.BiotechnologyTP248.13-248.65ESRevista de I + D Tecnológico, Vol 16, Iss 1, Pp 61-69 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
ES |
topic |
harmonics analysis, unbalanced loads, non-linear loads, georeferenced distribution network, electric vehicle. Biotechnology TP248.13-248.65 |
spellingShingle |
harmonics analysis, unbalanced loads, non-linear loads, georeferenced distribution network, electric vehicle. Biotechnology TP248.13-248.65 Alex Valenzuela Carlos Barrera Esteban Inga Electrical assessment of georeferenced distribution network due to electric vehicles deployment |
description |
Several cities worldwide are focused to reduce the environmental degradation based on the deployment and integration of renewable energies and electric vehicles (EV) into the distribution network. The first one replaces electricity produced by fossil fuels with solar, wind or hydro power plants, whilst the second one is a feasible alternative to substitute internal combustion engine (ICE) vehicles with eco-friendly vehicles. Set in this context, this paper proposes an examination about the main effects in a georeferenced distribution system when non-linear loads are connected to the grid. The distribution network model contemplates georeferenced data from customers, where unbalanced currents due to the customer’s consumption in each distribution transformer is evaluated using a variety of coefficient for commercial and residential load models. Voltage unbalance, harmonics and load flow analysis is performed in PowerFactory to determine the impacts of EVs to the grid. |
format |
article |
author |
Alex Valenzuela Carlos Barrera Esteban Inga |
author_facet |
Alex Valenzuela Carlos Barrera Esteban Inga |
author_sort |
Alex Valenzuela |
title |
Electrical assessment of georeferenced distribution network due to electric vehicles deployment |
title_short |
Electrical assessment of georeferenced distribution network due to electric vehicles deployment |
title_full |
Electrical assessment of georeferenced distribution network due to electric vehicles deployment |
title_fullStr |
Electrical assessment of georeferenced distribution network due to electric vehicles deployment |
title_full_unstemmed |
Electrical assessment of georeferenced distribution network due to electric vehicles deployment |
title_sort |
electrical assessment of georeferenced distribution network due to electric vehicles deployment |
publisher |
Editorial Universitaria |
publishDate |
2020 |
url |
https://doaj.org/article/b853fff2875f46568e6651f4cf461d2b |
work_keys_str_mv |
AT alexvalenzuela electricalassessmentofgeoreferenceddistributionnetworkduetoelectricvehiclesdeployment AT carlosbarrera electricalassessmentofgeoreferenceddistributionnetworkduetoelectricvehiclesdeployment AT estebaninga electricalassessmentofgeoreferenceddistributionnetworkduetoelectricvehiclesdeployment |
_version_ |
1718426262336176128 |