Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering
Sanaz Naghavi Alhosseini1, Fathollah Moztarzadeh1, Masoud Mozafari1, Shadnaz Asgari2, Masumeh Dodel3, Ali Samadikuchaksaraei4,5, Saeid Kargozar6, Newsha Jalali11Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran; 2Neural Sys...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b865820595334b9eb943fbf5f6377329 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b865820595334b9eb943fbf5f6377329 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b865820595334b9eb943fbf5f63773292021-12-02T00:22:12ZSynthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering1176-91141178-2013https://doaj.org/article/b865820595334b9eb943fbf5f63773292012-01-01T00:00:00Zhttp://www.dovepress.com/synthesis-and-characterization-of-electrospun-polyvinyl-alcohol-nanofi-a8987https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Sanaz Naghavi Alhosseini1, Fathollah Moztarzadeh1, Masoud Mozafari1, Shadnaz Asgari2, Masumeh Dodel3, Ali Samadikuchaksaraei4,5, Saeid Kargozar6, Newsha Jalali11Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran; 2Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; 3Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran; 4Department of Biotechnology and Cellular and Molecular Research Center, Tehran University of Medical Sciences, Tehran, Iran; 5Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK; 6Department of Biotechnology, Tehran University of Medical Sciences, Tehran, IranAbstract: Among several attempts to integrate tissue engineering concepts into strategies to repair different parts of the human body, neuronal repair stands as a challenging area due to the complexity of the structure and function of the nervous system and the low efficiency of conventional repair approaches. Herein, electrospun polyvinyl alcohol (PVA)/chitosan nanofibrous scaffolds have been synthesized with large pore sizes as potential matrices for nervous tissue engineering and repair. PVA fibers were modified through blending with chitosan and porosity of scaffolds was measured at various levels of their depth through an image analysis method. In addition, the structural, physicochemical, biodegradability, and swelling of the chitosan nanofibrous scaffolds were evaluated. The chitosan-containing scaffolds were used for in vitro cell culture in contact with PC12 nerve cells, and they were found to exhibit the most balanced properties to meet the basic required specifications for nerve cells. It could be concluded that addition of chitosan to the PVA scaffolds enhances viability and proliferation of nerve cells, which increases the biocompatibility of the scaffolds. In fact, addition of a small percentage of chitosan to the PVA scaffolds proved to be a promising approach for synthesis of a neural-friendly polymeric blend.Keywords: polyvinyl alcohol, chitosan, polymer blending, nanofibrous scaffolds, neural tissue engineeringNaghavi Alhosseini SMoztarzadeh FMozafari MAsgari SDodel MSamadikuchaksaraei AKargozar SJalali NDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 25-34 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Naghavi Alhosseini S Moztarzadeh F Mozafari M Asgari S Dodel M Samadikuchaksaraei A Kargozar S Jalali N Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering |
description |
Sanaz Naghavi Alhosseini1, Fathollah Moztarzadeh1, Masoud Mozafari1, Shadnaz Asgari2, Masumeh Dodel3, Ali Samadikuchaksaraei4,5, Saeid Kargozar6, Newsha Jalali11Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran; 2Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; 3Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran; 4Department of Biotechnology and Cellular and Molecular Research Center, Tehran University of Medical Sciences, Tehran, Iran; 5Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK; 6Department of Biotechnology, Tehran University of Medical Sciences, Tehran, IranAbstract: Among several attempts to integrate tissue engineering concepts into strategies to repair different parts of the human body, neuronal repair stands as a challenging area due to the complexity of the structure and function of the nervous system and the low efficiency of conventional repair approaches. Herein, electrospun polyvinyl alcohol (PVA)/chitosan nanofibrous scaffolds have been synthesized with large pore sizes as potential matrices for nervous tissue engineering and repair. PVA fibers were modified through blending with chitosan and porosity of scaffolds was measured at various levels of their depth through an image analysis method. In addition, the structural, physicochemical, biodegradability, and swelling of the chitosan nanofibrous scaffolds were evaluated. The chitosan-containing scaffolds were used for in vitro cell culture in contact with PC12 nerve cells, and they were found to exhibit the most balanced properties to meet the basic required specifications for nerve cells. It could be concluded that addition of chitosan to the PVA scaffolds enhances viability and proliferation of nerve cells, which increases the biocompatibility of the scaffolds. In fact, addition of a small percentage of chitosan to the PVA scaffolds proved to be a promising approach for synthesis of a neural-friendly polymeric blend.Keywords: polyvinyl alcohol, chitosan, polymer blending, nanofibrous scaffolds, neural tissue engineering |
format |
article |
author |
Naghavi Alhosseini S Moztarzadeh F Mozafari M Asgari S Dodel M Samadikuchaksaraei A Kargozar S Jalali N |
author_facet |
Naghavi Alhosseini S Moztarzadeh F Mozafari M Asgari S Dodel M Samadikuchaksaraei A Kargozar S Jalali N |
author_sort |
Naghavi Alhosseini S |
title |
Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering |
title_short |
Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering |
title_full |
Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering |
title_fullStr |
Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering |
title_full_unstemmed |
Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering |
title_sort |
synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering |
publisher |
Dove Medical Press |
publishDate |
2012 |
url |
https://doaj.org/article/b865820595334b9eb943fbf5f6377329 |
work_keys_str_mv |
AT naghavialhosseinis synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering AT moztarzadehf synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering AT mozafarim synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering AT asgaris synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering AT dodelm synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering AT samadikuchaksaraeia synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering AT kargozars synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering AT jalalin synthesisandcharacterizationofelectrospunpolyvinylalcoholnanofibrousscaffoldsmodifiedbyblendingwithchitosanforneuraltissueengineering |
_version_ |
1718403825947115520 |