Gaussian network model can be enhanced by combining solvent accessibility in proteins
Abstract Gaussian network model (GNM), regarded as the simplest and most representative coarse-grained model, has been widely adopted to analyze and reveal protein dynamics and functions. Designing a variation of the classical GNM, by defining a new Kirchhoff matrix, is the way to improve the residu...
Guardado en:
Autores principales: | Hua Zhang, Tao Jiang, Guogen Shan, Shiqi Xu, Yujie Song |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b86819f7500a46898897d81db8eff9fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gaussian synapses for probabilistic neural networks
por: Amritanand Sebastian, et al.
Publicado: (2019) -
Enhanced energy-constrained quantum communication over bosonic Gaussian channels
por: Kyungjoo Noh, et al.
Publicado: (2020) -
Predicting Human Protein Subcellular Locations by Using a Combination of Network and Function Features
por: Lei Chen, et al.
Publicado: (2021) -
Publisher Correction: Enhanced energy-constrained quantum communication over bosonic Gaussian channels
por: Kyungjoo Noh, et al.
Publicado: (2020) -
RNA structure refinement using NMR solvent accessibility data
por: Christoph Hartlmüller, et al.
Publicado: (2017)