Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM
Abstract We present a new cloud scheme for the ECHAM‐HAM global climate model (GCM) that includes prognostic cloud fraction and allows for subsaturation and supersaturation with respect to ice separately in the cloud‐free and cloudy air. Stratiform clouds form by convective detrainment, turbulent ve...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8715314e4d74e679b836a63bcb765b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b8715314e4d74e679b836a63bcb765b3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b8715314e4d74e679b836a63bcb765b32021-11-15T14:20:27ZDeveloping a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM1942-246610.1029/2019MS001824https://doaj.org/article/b8715314e4d74e679b836a63bcb765b32020-08-01T00:00:00Zhttps://doi.org/10.1029/2019MS001824https://doaj.org/toc/1942-2466Abstract We present a new cloud scheme for the ECHAM‐HAM global climate model (GCM) that includes prognostic cloud fraction and allows for subsaturation and supersaturation with respect to ice separately in the cloud‐free and cloudy air. Stratiform clouds form by convective detrainment, turbulent vertical diffusion, and large‐scale ascent. For each process, the corresponding cloud fraction is calculated, and the individual updraft velocities are used to determine cloud droplet/ice crystal number concentrations. Further, convective condensate is always detrained as supercooled cloud droplets at mixed‐phase temperatures (between 235 and 273 K), and convectively detrained ice crystal number concentrations are calculated based on the updraft velocity. Finally, the new scheme explicitly calculates condensation/evaporation and deposition/sublimation rates for phase‐change calculations. The new cloud scheme simulates a reasonable present‐day climate, reduces the previously overestimated cirrus cloud fraction, and in general improves the simulation of ice clouds. The model simulates the observed in‐cloud supersaturation for cirrus clouds, and it allows for a better representation of the tropical to extra‐tropical ratio of the longwave cloud radiative effect. Further, the ice water path, the ice crystal number concentrations, and the supercooled liquid fractions in mixed‐phase clouds agree better with observations in the new model than in the reference model. Ice crystal formation is dominated by the liquid‐origin processes of convective detrainment and homogeneous freezing of cloud droplets. The simulated ice clouds strongly depend on model tuning choices, in particular, the enhancement of the aggregation rate of ice crystals.Steffen MuenchUlrike LohmannAmerican Geophysical Union (AGU)articlecloudsclimate modelcloud coverice cloudscloud microphysicsPhysical geographyGB3-5030OceanographyGC1-1581ENJournal of Advances in Modeling Earth Systems, Vol 12, Iss 8, Pp n/a-n/a (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
clouds climate model cloud cover ice clouds cloud microphysics Physical geography GB3-5030 Oceanography GC1-1581 |
spellingShingle |
clouds climate model cloud cover ice clouds cloud microphysics Physical geography GB3-5030 Oceanography GC1-1581 Steffen Muench Ulrike Lohmann Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM |
description |
Abstract We present a new cloud scheme for the ECHAM‐HAM global climate model (GCM) that includes prognostic cloud fraction and allows for subsaturation and supersaturation with respect to ice separately in the cloud‐free and cloudy air. Stratiform clouds form by convective detrainment, turbulent vertical diffusion, and large‐scale ascent. For each process, the corresponding cloud fraction is calculated, and the individual updraft velocities are used to determine cloud droplet/ice crystal number concentrations. Further, convective condensate is always detrained as supercooled cloud droplets at mixed‐phase temperatures (between 235 and 273 K), and convectively detrained ice crystal number concentrations are calculated based on the updraft velocity. Finally, the new scheme explicitly calculates condensation/evaporation and deposition/sublimation rates for phase‐change calculations. The new cloud scheme simulates a reasonable present‐day climate, reduces the previously overestimated cirrus cloud fraction, and in general improves the simulation of ice clouds. The model simulates the observed in‐cloud supersaturation for cirrus clouds, and it allows for a better representation of the tropical to extra‐tropical ratio of the longwave cloud radiative effect. Further, the ice water path, the ice crystal number concentrations, and the supercooled liquid fractions in mixed‐phase clouds agree better with observations in the new model than in the reference model. Ice crystal formation is dominated by the liquid‐origin processes of convective detrainment and homogeneous freezing of cloud droplets. The simulated ice clouds strongly depend on model tuning choices, in particular, the enhancement of the aggregation rate of ice crystals. |
format |
article |
author |
Steffen Muench Ulrike Lohmann |
author_facet |
Steffen Muench Ulrike Lohmann |
author_sort |
Steffen Muench |
title |
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM |
title_short |
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM |
title_full |
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM |
title_fullStr |
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM |
title_full_unstemmed |
Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM‐HAM |
title_sort |
developing a cloud scheme with prognostic cloud fraction and two moment microphysics for echam‐ham |
publisher |
American Geophysical Union (AGU) |
publishDate |
2020 |
url |
https://doaj.org/article/b8715314e4d74e679b836a63bcb765b3 |
work_keys_str_mv |
AT steffenmuench developingacloudschemewithprognosticcloudfractionandtwomomentmicrophysicsforechamham AT ulrikelohmann developingacloudschemewithprognosticcloudfractionandtwomomentmicrophysicsforechamham |
_version_ |
1718428398479474688 |