Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification
Abstract Background The correct identification of pills is very important to ensure the safe administration of drugs to patients. Here, we use three current mainstream object detection models, namely RetinaNet, Single Shot Multi-Box Detector (SSD), and You Only Look Once v3(YOLO v3), to identify pil...
Guardado en:
Autores principales: | Lu Tan, Tianran Huangfu, Liyao Wu, Wenying Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8730b5e504e4900ae76aa43042b7a96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle
por: Beibei Xu, et al.
Publicado: (2021) -
Automatic Detection and Counting of Blood Cells in Smear Images Using RetinaNet
por: Grzegorz Drałus, et al.
Publicado: (2021) -
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
por: Minghua Zhang, et al.
Publicado: (2021) -
Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo
por: Qurotul Aini, et al.
Publicado: (2021) -
FREQUENCY AND METHODS OF CORRECTION OF MAGNESIUM DEFICIENCY IN YOUNG WOMEN OF REPRODUCTIVE AGE AT TAKING COMBINED ORAL CONTRACEPTIVE PILLS
por: I. S. Vyatkina, et al.
Publicado: (2014)