Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification
Abstract Background The correct identification of pills is very important to ensure the safe administration of drugs to patients. Here, we use three current mainstream object detection models, namely RetinaNet, Single Shot Multi-Box Detector (SSD), and You Only Look Once v3(YOLO v3), to identify pil...
Enregistré dans:
Auteurs principaux: | Lu Tan, Tianran Huangfu, Liyao Wu, Wenying Chen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b8730b5e504e4900ae76aa43042b7a96 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle
par: Beibei Xu, et autres
Publié: (2021) -
Automatic Detection and Counting of Blood Cells in Smear Images Using RetinaNet
par: Grzegorz Drałus, et autres
Publié: (2021) -
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
par: Minghua Zhang, et autres
Publié: (2021) -
Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo
par: Qurotul Aini, et autres
Publié: (2021) -
FREQUENCY AND METHODS OF CORRECTION OF MAGNESIUM DEFICIENCY IN YOUNG WOMEN OF REPRODUCTIVE AGE AT TAKING COMBINED ORAL CONTRACEPTIVE PILLS
par: I. S. Vyatkina, et autres
Publié: (2014)