Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain
Abstract The interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is believed to be the entry point of the virus into various cells in the body, including the lungs, heart, liver, and kidneys. The current focus of several therapeutic design e...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8913412ea3042efbb8a5bc3b430b8df |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b8913412ea3042efbb8a5bc3b430b8df |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b8913412ea3042efbb8a5bc3b430b8df2021-12-02T17:16:04ZUnraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain10.1038/s41598-021-88696-52045-2322https://doaj.org/article/b8913412ea3042efbb8a5bc3b430b8df2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88696-5https://doaj.org/toc/2045-2322Abstract The interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is believed to be the entry point of the virus into various cells in the body, including the lungs, heart, liver, and kidneys. The current focus of several therapeutic design efforts explores attempts at affecting the binding potential between the two proteins to limit the activity of the virus and disease progression. In this work, we analyze the stability of the spike protein under all possible single-point mutations in the RBD and computationally explore mutations that can affect the binding with the ACE2 enzyme. We unravel the mutation landscape of the receptor region and assess the toxicity potential of single and multi-point mutations, generating insights for future vaccine efforts on mutations that might further stabilize the spike protein and increase its infectivity. We developed a tool, called SpikeMutator, to construct full atomic protein structures of the mutant spike proteins and shared a database of 3800 single-point mutant structures. We analyzed the recent 65,000 reported spike sequences across the globe and observed the emergence of stable multi-point mutant structures. Using the landscape, we searched through 7.5 million possible 2-point mutation combinations and report that the (R355D K424E) mutation produces one of the strongest spike proteins that therapeutic efforts should investigate for the sake of developing effective vaccines.Mohamed Raef SmaouiHamdi YahyaouiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Mohamed Raef Smaoui Hamdi Yahyaoui Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain |
description |
Abstract The interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is believed to be the entry point of the virus into various cells in the body, including the lungs, heart, liver, and kidneys. The current focus of several therapeutic design efforts explores attempts at affecting the binding potential between the two proteins to limit the activity of the virus and disease progression. In this work, we analyze the stability of the spike protein under all possible single-point mutations in the RBD and computationally explore mutations that can affect the binding with the ACE2 enzyme. We unravel the mutation landscape of the receptor region and assess the toxicity potential of single and multi-point mutations, generating insights for future vaccine efforts on mutations that might further stabilize the spike protein and increase its infectivity. We developed a tool, called SpikeMutator, to construct full atomic protein structures of the mutant spike proteins and shared a database of 3800 single-point mutant structures. We analyzed the recent 65,000 reported spike sequences across the globe and observed the emergence of stable multi-point mutant structures. Using the landscape, we searched through 7.5 million possible 2-point mutation combinations and report that the (R355D K424E) mutation produces one of the strongest spike proteins that therapeutic efforts should investigate for the sake of developing effective vaccines. |
format |
article |
author |
Mohamed Raef Smaoui Hamdi Yahyaoui |
author_facet |
Mohamed Raef Smaoui Hamdi Yahyaoui |
author_sort |
Mohamed Raef Smaoui |
title |
Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain |
title_short |
Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain |
title_full |
Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain |
title_fullStr |
Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain |
title_full_unstemmed |
Unraveling the stability landscape of mutations in the SARS-CoV-2 receptor-binding domain |
title_sort |
unraveling the stability landscape of mutations in the sars-cov-2 receptor-binding domain |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/b8913412ea3042efbb8a5bc3b430b8df |
work_keys_str_mv |
AT mohamedraefsmaoui unravelingthestabilitylandscapeofmutationsinthesarscov2receptorbindingdomain AT hamdiyahyaoui unravelingthestabilitylandscapeofmutationsinthesarscov2receptorbindingdomain |
_version_ |
1718381224225931264 |