High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci
Abstract Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8a06b814e0248288830020045d527fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:b8a06b814e0248288830020045d527fd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:b8a06b814e0248288830020045d527fd2021-12-02T15:05:18ZHigh resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci10.1038/s41598-017-06110-52045-2322https://doaj.org/article/b8a06b814e0248288830020045d527fd2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06110-5https://doaj.org/toc/2045-2322Abstract Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We therefore evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report new insight into molecular processes and genome organization. We present a highly resolved differentiation cascade that exhibits coding and noncoding transcriptional alterations, transcription factor network interactions and alternative splicing events, little of which can be resolved by long-interval developmental time-courses. We describe novel short lived and cycling patterns of gene expression and dissect temporally ordered gene expression changes in response to transcription factors. We elucidate patterns in gene co-expression across the genome, describe asynchronous transcription at bidirectional promoters and functionally annotate known and novel regulatory lncRNAs. These findings highlight the complex and dynamic molecular events underlying mammalian differentiation that can only be observed though a temporally resolved time course.Brian S. GlossBethany SignalSeth W. CheethamFranziska GruhlDominik C. KaczorowskiAndrew C. PerkinsMarcel E. DingerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Brian S. Gloss Bethany Signal Seth W. Cheetham Franziska Gruhl Dominik C. Kaczorowski Andrew C. Perkins Marcel E. Dinger High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci |
description |
Abstract Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We therefore evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report new insight into molecular processes and genome organization. We present a highly resolved differentiation cascade that exhibits coding and noncoding transcriptional alterations, transcription factor network interactions and alternative splicing events, little of which can be resolved by long-interval developmental time-courses. We describe novel short lived and cycling patterns of gene expression and dissect temporally ordered gene expression changes in response to transcription factors. We elucidate patterns in gene co-expression across the genome, describe asynchronous transcription at bidirectional promoters and functionally annotate known and novel regulatory lncRNAs. These findings highlight the complex and dynamic molecular events underlying mammalian differentiation that can only be observed though a temporally resolved time course. |
format |
article |
author |
Brian S. Gloss Bethany Signal Seth W. Cheetham Franziska Gruhl Dominik C. Kaczorowski Andrew C. Perkins Marcel E. Dinger |
author_facet |
Brian S. Gloss Bethany Signal Seth W. Cheetham Franziska Gruhl Dominik C. Kaczorowski Andrew C. Perkins Marcel E. Dinger |
author_sort |
Brian S. Gloss |
title |
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci |
title_short |
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci |
title_full |
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci |
title_fullStr |
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci |
title_full_unstemmed |
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci |
title_sort |
high resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/b8a06b814e0248288830020045d527fd |
work_keys_str_mv |
AT briansgloss highresolutiontemporaltranscriptomicsofmouseembryoidbodydevelopmentrevealscomplexexpressiondynamicsofcodingandnoncodingloci AT bethanysignal highresolutiontemporaltranscriptomicsofmouseembryoidbodydevelopmentrevealscomplexexpressiondynamicsofcodingandnoncodingloci AT sethwcheetham highresolutiontemporaltranscriptomicsofmouseembryoidbodydevelopmentrevealscomplexexpressiondynamicsofcodingandnoncodingloci AT franziskagruhl highresolutiontemporaltranscriptomicsofmouseembryoidbodydevelopmentrevealscomplexexpressiondynamicsofcodingandnoncodingloci AT dominikckaczorowski highresolutiontemporaltranscriptomicsofmouseembryoidbodydevelopmentrevealscomplexexpressiondynamicsofcodingandnoncodingloci AT andrewcperkins highresolutiontemporaltranscriptomicsofmouseembryoidbodydevelopmentrevealscomplexexpressiondynamicsofcodingandnoncodingloci AT marceledinger highresolutiontemporaltranscriptomicsofmouseembryoidbodydevelopmentrevealscomplexexpressiondynamicsofcodingandnoncodingloci |
_version_ |
1718388917945761792 |