A brain extraction algorithm for infant T2 weighted magnetic resonance images based on fuzzy c-means thresholding
Abstract It is challenging to extract the brain region from T2-weighted magnetic resonance infant brain images because conventional brain segmentation algorithms are generally optimized for adult brain images, which have different spatial resolution, dynamic changes of imaging intensity, brain size...
Guardado en:
Autores principales: | Inyoung Bae, Jong-Hee Chae, Yeji Han |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8a75ca265314cd0b83431c1e29b7bd9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fuzzy Multilevel Image Thresholding Based on Improved Coyote Optimization Algorithm
por: Linguo Li, et al.
Publicado: (2021) -
Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction
por: Almazroa A, et al.
Publicado: (2017) -
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
por: Keong-Hun Choi, et al.
Publicado: (2021) -
Value of diffusion-weighted magnetic resonance imaging in the diagnosis of pyomyoma
por: Helena Peris, MD, et al.
Publicado: (2022) -
Restrictive versus liberal transfusion thresholds in very low birth weight infants: A systematic review with meta-analysis.
por: Peng Wang, et al.
Publicado: (2021)