TwinCons: Conservation score for uncovering deep sequence similarity and divergence.
We have developed the program TwinCons, to detect noisy signals of deep ancestry of proteins or nucleic acids. As input, the program uses a composite alignment containing pre-defined groups, and mathematically determines a 'cost' of transforming one group to the other at each position of t...
Enregistré dans:
Auteurs principaux: | Petar I Penev, Claudia Alvarez-Carreño, Eric Smith, Anton S Petrov, Loren Dean Williams |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/b8aec4db844f4ec1adda39cb98b36cd8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
TwinCons: Conservation score for uncovering deep sequence similarity and divergence
par: Petar I. Penev, et autres
Publié: (2021) -
Geometric similarity of the twin collapsed glaciers in the west Tibet
par: Hu Wentao, et autres
Publié: (2021) -
Uncovering Divergence in Gene Expression Regulation in the Adaptation of Yeast to Nitrogen Scarcity
par: Carlos A. Villarroel, et autres
Publié: (2021) -
Brain age prediction using deep learning uncovers associated sequence variants
par: B. A. Jonsson, et autres
Publié: (2019) -
Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations
par: Ying Wang, et autres
Publié: (2020)