Critical fluctuations in epidemic models explain COVID-19 post-lockdown dynamics
Abstract As the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. The momentary reproduction ratio r(t) of an epidemic is used as a public health guiding tool to evaluate the course...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/b8b02e8111c04669b07aa5bb5e842999 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract As the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. The momentary reproduction ratio r(t) of an epidemic is used as a public health guiding tool to evaluate the course of the epidemic, with the evolution of r(t) being the reasoning behind tightening and relaxing control measures over time. Here we investigate critical fluctuations around the epidemiological threshold, resembling new waves, even when the community disease transmission rate $$\beta$$ β is not significantly changing. Without loss of generality, we use simple models that can be treated analytically and results are applied to more complex models describing COVID-19 epidemics. Our analysis shows that, rather than the supercritical regime (infectivity larger than a critical value, $$\beta > \beta _c$$ β > β c ) leading to new exponential growth of infection, the subcritical regime (infectivity smaller than a critical value, $$\beta < \beta _c$$ β < β c ) with small import is able to explain the dynamic behaviour of COVID-19 spreading after a lockdown lifting, with $$r(t) \approx 1$$ r ( t ) ≈ 1 hovering around its threshold value. |
---|